
CS 7545: Machine Learning Theory Fall 2019

Lecture 6: Weighted Majority Algorithm
Lecturer: Jacob Abernethy Scribes: Haoliang Jiang and Andi Wang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

6.1 Review of the last lecture

General setup

• For each round t, every expert i gives a prediction xti ∈ {0, 1};

• An algorithm predicts ŷt ∈ {0, 1}, based on experts’ predictions;

• Natural reveals yt ∈ {0, 1}.

Halving algorithm In last lecture, we proved the following claim:

Claim 6.1 There exists an algorithm which makes fewer than log2N mistakes by an arbitrary time T > 0,

MT (Alg) =

T∑
t=1

1[ŷt 6= yt] ≤ log2N

This claimed is proved by considering the halving algorithm. Recall that the proof was sketched as follows.
Proof: Let Ct+1 be the index set of experts who have not yet made mistakes in the first t rounds. We

have,
C1 = {1, 2, 3, ..., N}

Ct+1 = Ct \ {i : xti 6= yt}

ŷt = round

(
1

|Ct|
∑
i∈Ct

xti

)
We can observe that once the algorithm made a mistake, the majority (no less than half) of experts must
made a wrong prediction. Then the number of the remaining experts in the next round would be reduced
by at least half.

ŷt 6= yt =⇒ |Ct+1|/|Ct| ≤
1

2
=⇒ |Ct+1| ≤ |C1|(

1

2
)Mt

Suppose the algorithm finds the perfect expert after round T, this means |CT+1| ≤ 1. Then the maximum
MT satisfies MT ≤ log2N , where N is the number of experts in the first round.

6.2 The case with multiple choices

Let’s now consider a motivating example of betting the winning team of a tournament. Assume that there
are n teams. On each round, two teams it and jt play a match. An algorithm aims predicting the outcome
of the match: whether it beats jt or vice versa. Assume that each game has only one winner, either it or jt.

Assume that there exists a permutation of all teams π∗ ∈ Sn, which specifies the outcome of all matches.
(Here Sn represents the set of all permutations on [n].) Specifically, it beats jt if and only if π(it) ≥ π(jt).
Intuitively, there is an absolute ranking of the teams that specifies the outcome of the result. Now, we need
an algorithm that minimizes the total number of mistakes.

6-1

Lecture 6: Weighted Majority Algorithm 6-2

Claim 6.2 There exists an algorithm that satisfies the following bound:

Ct ≤ log2{n!}. ≤ n log2 n

where Ct is the smallest number of mistakes that an algorithm makes before time t.

The idea is to consider a committee of n! experts. Each of them corresponds to a permutation π ∈ Sn,
and predict the outcome of the game between it and jt according to whether π(it) > π(jt), i.e.,

xtπ = 1[π(it) > π(jt)].

Also, the decision by Nature can be described by permutation π∗,

yt = 1[π∗(it) > π∗(jt)].

Now, we transform the setup of this problem to that of the Halving Algorithm, and that Claim 6.2 follows
immediately from Claim 6.1.

Remarks

• The students are encouraged to think about if/how the above algorithm can be performed efficiently.

• By Sterling formula, the expression log{n!} is actually in the order of n log n. Notice that the order
is the same with that of the comparisons you need in sort a sequence of size n. However, a major
difference is that in sorting problem, we can arbitrarily select the two elements to compare. In our
“experts” setup, however, every pair of teams is selected based on the game played, and the measure
is the number of mistakes instead of the number of comparisons.

• We might need a smoother algorithm than Halving Algorithm that it might not expire experts once
they made a mistake and is similar to a weighted majority vote, as will be introduced in the next
section.

6.3 Weighted Majority Algorithm

Now let’s consider the case where no expert is “perfect”, that is, all experts are subject to making mistakes.
Let MT (i) :=

∑T
t=1 1 [xti 6= yt] be the number of incorrect guesses from expert i up to time T and

MT (Alg) :=
∑T
t=1 1 [ŷt 6= yt] be the total number of incorrect guesses generated from the algorithm that

based on the answers of the experts.
We will describe “weighted majority algorithm” (WMA) below, which can be regarded a “softer” or

“smoother” version of the Halving algorithm. In WMA, making mistakes will not get an expert “fired”.
Instead, a mistake downgrade the weight of this expert’s guesses. In this sense, the Halving Algorithm is a
special case of it, as each expert are assigned with zero or one weight, and making each mistake drops its
weight down to zero. It was formally proposed in 1994. However, similar idea appeared around 1950s/1960s.

Weighted Majority Algorithm Let there be N experts in total, and the ith expert make prediction xti
at time t. WMA sets weight wti for expert i at each time t, and predicts the output using Algorithm 1 based
on the experts’ prediction.

The following Theorem 6.3 gives an upper bound on MT (WMA), the number of wrong decisions ŷt given
by the WMA from time 1 to T .

Theorem 6.3 For any sequence of data ~x1, . . . , ~xt and y1, . . . , yt, we have

MT (WMA) ≤ 2

ε
log (N) + 2(1 + ε)MT (i)

for any ε > 0 and i = 1, . . . , N , where log(·) represents the natural logarithm with base e.

Lecture 6: Weighted Majority Algorithm 6-3

Algorithm 1 Weighted Majority Algorithm

Initialize w1
i ← 1,∀i = 1, . . . , N ;

for t = 2, . . . , T do
Generate prediction at time t by the weighted average of all experts

ŷt ← round

(∑N
i=1 w

t
ix
t
i∑N

i=1 w
t
i

)
,

Update the weight of all experts with

wt+1
i ← wti(1− ε)1

[
xti 6= yt

]
.

end for

Several remarks on the WMA algorithm and Theorem 6.3:

• As the statement in the above theorem holds for every expert, it naturally holds for the “best” expert
among all N experts.

• As we select ε = 1, the WMA algorithm reduces to Halving Algorithm and thus also gives an error
bound for it. This bound is very similar to the one presented in Lecture 5, only up to a constant
factor. In fact, under the setting that there exists an expert i who always makes correct guess, we have
MT (i) = 0, and thus MT (WMA) ≤ 2 loge(N).

• Consider that you have N machine learning methods to predict the outcome, and you do not know
which method performs the best. The theorem here implies that as the number of observations T →∞,
you can always construct an algorithm so that MT (Alg) increases at the same order as MT (i), where
i represents the algorithm with the best performance. (Note that 2 loge(N/ε) is neligible as T →∞).
Moreover, this algorithm is constructed according to the WMA.

• The WMA is similar to ensemble learning methods such as boosting, though the latter is more complex.

The remaining part of this lecture proves Theorem 6.3. We first need the following lemma:

Lemma 6.4 The inequalities below hold:

1. log(1 + x) ≤ x for all x ∈ R;

2. 1 + x ≤ exp(x) for all x ∈ R;

3. exp(ax) ≤ 1 + (ea − 1)x for all x ∈ [0, 1];

4. (Challenge Problem) : − log(1 + x) ≤ −x+ x2 for all x ∈ [−1/2, 0].

Proof:

• The inequality 1 and 2 can be derived from the concavity and convexity of y = log(1 + x) and
y = exp{x}, respectively. The tangent line of y = log(1 + x) at point x = 0 is y = x, and thus
log(1 + x) ≤ x. The tangent line of y = exp{x} at point x = 0 is y = x+ 1, and thus exp{x} ≥ x+ 1.
These two inequalities are illustrated in the first two plots in Figure 6.1.

• The inequality 3 results from the convexity of function y = exp{ax}. As shown in the last plot in
Figure 6.1, we have

(1− x) exp(a · 0) + x exp(a · 1) ≥ exp {a · [0 · (1− x) + 1 · x]} ,

which indicates
exp(ax) ≤ 1 + (exp(a)− 1)x.

Lecture 6: Weighted Majority Algorithm 6-4

Figure 6.1: Illustrations of the proof of Lemma 6.4

• The inequality 4 is left as an exercise.

The Lemma 6.4 will be used to prove Theorem 6.3. The proof also relies on the properties of the potential
function, as described below.

Definition 6.5 (Potential function) The function Φt :=
∑N
i=1 w

t
i is called the potential function.

Proposition 6.6 Based on the WMA algorithm, we have the following facts on the potential function:

1. (Initial condition) Φ1 = N ;

2. (Lower bound) ΦT+1 ≥ wT+1
i = (1− ε)MT (i);

3. (Upper bound) ΦT+1 ≤ N (1− ε/2)
MT (WMA)

.

Proof:

1. The result follows immediately from the initial condition w1
i = 1,∀i.

2. Trivial

3. To prove the upper bound, we need to show

Claim 6.7 If the WMA errs at time t, then

Φt+1 ≤ (1− ε/2)Φt.

Proof: In class, Prof. Abernethy gave an illustrative interpretation1. Based on its idea, a formal proof
is provided here. Let It = {i : xti 6= yt}. We first show that

∑
i∈It w

t
i ≥ 1

2

∑N
i=1 w

t
i . When yt = 0,

1Consider N objects in the space whose volumes are wt
i , i = 1, . . . , N at time t. They are colored as black and white, and

the black objects takes over half of the entire volume. At time t + 1, the black objects shrink by factor 1 − ε. Then the total
size of the objects shrink by a factor at least (1− ε/2).

Lecture 6: Weighted Majority Algorithm 6-5

that WMA errs indicates that ŷt = 1, i.e., It = {i : xti = 1} and
∑

i∈It
wt

i∑N
i=1 w

t
i

> 1/2; when yt = 1, that

WMA errs indicates that ŷt = 0, i.e., It = {i : xti = 0} and

∑
i∈Ict

wt
i∑N

i=1 w
t
i

< 1/2, which further implies∑
i∈It w

t
i ≥

∑N
i=1 w

t
i .

Now

Φt+1 =

N∑
i=1

wt+1
i

=
∑
i∈It

wt+1
i +

∑
i∈Ict

wt+1
i

=
∑
i∈It

(1− ε)wti +
∑
i∈Ict

wti

=
∑
i∈It

(1− ε)wti +

(
N∑
i=1

wti −
∑
i∈It

wti

)

=(−ε)
∑
i∈It

wti +

N∑
i=1

wti

≥− ε

2

N∑
i=1

wti +

N∑
i=1

wti =
(

1− ε

2

)
Φt

With the Claim 6.7, we know

ΦT+1 ≤ (1− ε/2)1[y
T 6=ŷT]ΦT ≤ · · ·

≤
T∏
t=1

(1− ε/2)1[y
t 6=ŷt]Φ1 = N(1− ε/2)

∑T
t=1 1[ŷ

t 6=yt] = N(1− ε/2)MT (WMA)

Note that we used Item 1 in Proposition 6.6, Φ1 = N .

Finally, we prove the Theorem 6.3 below by integrating 2 and 3 of Proposition 6.6, as well as Lemma 6.4.
Proof: The upper bound and lower bound of Proposition 6.6 gives

(1− ε)MT (i) ≤ ΦT+1 ≤ N(1− ε/2)MT (WMA)

Take negative-log on both sides, we have

−MT (i) log(1− ε) ≥ ΦT+1 ≥ −MT (WMA) log (1− ε/2)− logN

By Inequality 4 in Lemma 6.4,
MT (i)(ε+ ε2) ≥ −MT (i) log(1− ε);

By Inequality 1 in Lemma 6.4,

−MT (WMA) log (1− ε/2)− logN ≥ − logN + (ε/2)MT (WMA).

Combine the above three inequalities, we have

MT (i)(ε+ ε2) ≥ − logN + (ε/2)MT (WMA)

Lecture 6: Weighted Majority Algorithm 6-6

Divide each side of the above inequality by ε/2, we have

MT (WMA) ≤ 2

ε
logN + 2(1 + ε)MT (i).

