
CS 7545: Machine Learning Theory Fall 2019

Lecture 19: Statisical Learning Theory
Lecturer: Jacob Abernethy Scribes: Disha Das, Gregory Hessler

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

19.1 Supervised Learning

The following are key ingredients for a supervised statistical learning scenario

1. An observation space X

2. A label space Y
Examples:

• {0, 1} “classification”

• [k] “multi-class clasification”

• R “regression”

3. A prediction space Ŷ. Often this is the same as the label space.
Example where they differ:

• Y = {0, 1} and Ŷ = [0, 1]

4. An unknown distribution D ∈ ∆(X × Y)

5. A hypothesis space H
Examples:

• Linear threshold functions: H = {hw,b(x) = 1[w · x + b > 0]}
• Decision stumps: H = {hi,c(x) = 1[xi > c]}
• Neural Networks: H = {hM1,b1,M2,b2,...Mk,bk(x) = σ(bk + Mkσ(bk−1 + Mk−1σ(. . . (x)))} where σ

is the sigmoid function

6. A loss function: ` : Ŷ × Y → R
Examples

• `(ŷ, y) = (y − ŷ)2 “squared loss” (often used for regression)

• `(ŷ, y) = max(0, 1− ŷy) “hinge loss”

• `(ŷ, y) = 1[ŷ 6= y] “0-1 loss”

19.1.1 Risk and Empirical Risk

Definition 19.1 (Risk) Given a distribution D, a hypothesis h ∈ H, and a loss function `, we define the
risk of h as

R(h) = E(x,y)∼D[`(h(x), y)].

Note that we typically cannot compute R(·) as we would need an infinite amount of data.

Definition 19.2 (Empirical Risk) Given data {(x1, y1), . . . , (xn, yn)} ∼ D, the empirical risk of a hy-
pothesis h is defined as

R̂n(h) =
1

n

n∑
i=1

`(h(xi, yi).
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19.2 Empirical Risk Minimization

Definition 19.3 (Empirical Risk Minimization (ERM)) The Empirical Risk Minimization algo-

rithm “learns” a best hypothesis ĥERM
n which minimizes the empirical risk

ĥERM
n = arg min

h∈H
R̂n(h).

Once we have found ĥERM
n , we often wish to know how well it “generalizes” through metrics such as the

estimation error and approximation error

Definition 19.4 (Estimation Error) We define the estimation error of an ERM hypothesis ĥERM
n as

R(ĥERM
n )− min

h∗∈H
R(h∗).

Definition 19.5 (Approximation Error) We define the approximation error of an ERM hypothesis

ĥERM
n as

R(h∗)− min
all functions h∗∗

R(h∗∗).

19.2.1 Bounding the Estimation Error

Notice that

R(ĥERMn )−min
hεH
R(h∗) = (19.1)

R(ĥERMn )− R̂n(ĥERMn ) (T1)

+R̂n(ĥERMn )− R̂n(h∗) (T2)

+R̂n(h∗)−R(h∗) (T3)

Claim 19.6 T2 ≤ 0

Proof: The above follows from the definition of ĥERMn

ĥERM
n = arg min

h∈H
R̂n(h).

Claim 19.7 T1 and T3 ≤ suph∈H |R(h)− R̂n(h)|

Remark: Bounding the above quantity suph∈H |R(h)−R̂n(h)| is known as a Uniform Deviation Bound.

Here, R̂n(h) corresponds to the training error and R(h) corresponds to the test error.

Proof: Inorder to bound suph∈H |R(h)− R̂n(h)|, we try to prove by incorrect derivation. Let

Zi = l(ĥERMn (xi), yi)

where (xi, yi) is the ith sample of training set.

R(ĥERMn ) = E(x,y)∼D[l(ĥERMn (x), y)] = µ

So,
E(xi,yi)[Zi] = µ
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Using Hoeffding’s inequality (assume l is bounded in [0, 1])

R̂n(ĥERMn )−R(ĥERM ) =
1

n

n∑
i=1

Zi − µ ≤
√
log1/δ

2n

with probability ≥ 1 − δ. But this is incorrect. If we get rid of ”ERM”, everything will be fine. But with
ERM, this claim is not true. This is because when we bound with Hoeffding’s inequality, we require Zi
to be independent. However, the ERM hypothesis ĥERMn makes the samples correlated and violates our
assumption. Hence the above derivation is incorrect.

The following can be done:

Pr(|R̂n(ĥ)−R(ĥ)| > t)

≤ Pr(∃h ∈ H : |R̂n(ĥ)−R(h)| > t)

≤
∑
h∈H

Pr(|R̂n(ĥ)−R(h)| > t)

≤ |H|exp(−2nt2) = δ

Thus,
Pr(|R̂n(ĥ)−R(ĥ)| > t) ≤ |H|exp(−2nt2)

With probability atleast 1− δ

|R̂n(ĥn)−R(ĥ)| ≤
√
log|H|/δ

2n


