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15.1 Follow The Regularized Leader

The final algorithm described in the class under the purview of Online Convex Optimization is Follow The
Regularized Leader. The algorithm takes the following form:

1: Inputs: Regularizer R(x), Convex Set K, initial point x1
2: for t = 1,..,T do
3: xt+1 = argmin

x∈K
η
∑t
s=1 fs(x) +R(x) OR argmin

x∈K
η
∑t
s=1〈∇fs(xs), x〉+R(x)

4: end for

Algorithm 1: Follow The Regularized Leader

As described above, there are 2 different versions of the algorithm. For the second version, we have the
following Theorem,

Theorem 15.1 Suppose x ∈ int(K), then the updating rule

xt+1 = argmin
x∈K

η

t∑
s=1

〈∇fs(xs), x〉+R(x)

is equivalent to the Online Mirror Descent discussed in Lecture 14

xt+1 = argmin
x∈K

η〈∇ft(xt), x〉+DR(x, xt)

.

To give some intuition about why this algorithm might be good, the professor showed that as long as x is
an interior point, then version 2 of the above algorithm is equivalent to Online Mirror Descent discussed in
Lecture 14.

Proof: Now, we know that for any point in the interior of the convex set, the minimum of a convex
function f(x) over this set will occur at this point if and only if ∇f(x) = ~0.

Now, let φ(x) = η
∑
〈∇fs(xs), x〉 + R(x). Then, taking the gradient and setting to ~0 and substituting

x = xt+1 we can write:

−η
t∑

s=1

∇fs(xs) = ∇R(xt+1) (15.1)

Now, in Online Mirror Descent, we find the minimum of the following function every iteration: φ1t+1(x) =

η〈∇ft(xt), x〉+DR(x, xt). Now, we will take the gradient of this function and set it to ~0. We get:

∇φ1t+1 = η∇ft(xt) +∇
(
R(x)−R(xt)− 〈∇R(xt), x− xt〉

)
= 0 (15.2)
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Simplifying, we get:

η∇ft(xt) +∇R(x)−∇R(xt) = 0 (15.3)

Rearranging the terms and substituting x = xt+1 we get:

∇R(xt+1) = −η∇ft(xt) +∇R(xt) (15.4)

It is easy to see that equation (15.4) is just a recursive representation of equation (15.1). Hence, the value
of x at which both φ(x) and φ1(x) attain their minimum each iteration is the same and the algorithms are
equivalent.

15.2 Multi-Armed Bandits

The bandit setting is in contrast to the full information setting where the entire loss vector is obtained.
Rather, in the bandit setting, feedback for an action is limited only to the selected action. This is formalized
as follows:

• We assume we are given n actions.

• At every iteration the algorithm selects a time varying probability distribution over actions denoted
by pt ∈ ∆n.

• Now, nature responds by choosing a loss vector lt ∈ [0, 1]n.

• Now, the algorithm samples an action it according to pt and observes only the loss corresponding to
this action i.e. ltit . The procedure is now repeated.

In this setting, we define regret as follows:

Definition 15.2 (Regret in bandit setting) The regret in the bandit setting is defined as:

RegretT =
∑T
t=1 l

t
it
−min

i

∑T
t=1 l

t
i

Now, it is clear from the definition that RegretT is a random variable. To make this more tractable, we
will assume the loss vector at each stage is independent of the probability distribution chosen over actions
Hence, we consider expected regret defined as follows:

Definition 15.3 (Expected Regret) The expected regret is defined as:

E[RegretT ] = E[
∑T
t=1 p

t · lt −min
i

∑T
t=1 l

t
i ]

where the expectation is taken over all the randomness in the algorithm.

15.3 EXP3 Algorithm and Analysis

Now, we describe an algorithm to achieve good regret bounds in this setting. Intuitively, the structure
of the algorithm looks a lot like the exponential weights algorithm for the hedge setting discussed in an
earlier lecture, with the following trick: Since we don’t know the full loss vector, we instead use an unbiased
estimator for the loss vector- we choose a vector l̂ with all 0s except at the ith position where i represents



Lecture 15: Follow The Regularized Leader, Multi-Armed Bandit & EXP3 15-3

the action sampled from the probability distribution. The ith coordinate is
ltit
ptit

. A simple calculation shows

that this is an unbiased estimator of the loss vector:

Eit [l̂] =

N∑
i=1

pti ·
[
0, ....., 0,

ltit
pti
, 0, ......., 0

]
= lt (15.5)

Now, in order to show that this trick works and derive the regret bounds for the EXP3 algorithm, we prove
the following Lemma which is a variant of a similar lemma proved for the Exponential Weights algorithm:

Lemma 15.4 Let x be a random variable that only takes non-negative values. Then, log E[e−sx] ≤ −sE[x]+
s2

2 E[x2]

Before proving the lemma, we will state 2 other elementary lemmas without proof that are important in
proving the above lemma.

Lemma 15.5 log(1 + x) ≤ x

Lemma 15.6 For all x > 0, e−sx ≤ −sx+ s2

2 x
2 + 1

The second lemma is a simple consequence of the Taylor series expansion of e−sx. We will now prove Lemma
15.4.

Proof: Using lemma 15.6 we can write the following equation:

log E[e−sx] ≤ log E[1− sx+
s2

2
x2] (15.6)

Simplifying, we get:

log E[e−sx] ≤ log
(
1− E[sx− s2

2
x2]
)

(15.7)

Now, using Lemma 15.5, we get:

log E[e−sx] ≤ −E[sx− s2

2
x2] = −sE[x] +

s2

2
E[x2] (15.8)

We can now formally describe the EXP3 algorithm and prove its regret bounds. The algorithm is given
below following which we state and prove a theorem that bounds its regret:

1: Initialize w1
1, w

1
2, ...w

1
n

2: for t = 1,..,T do
3: pt = ~wt/||~wt||1
4: sample it ∼ pt, observe `tit

5:
~̂
`t = [0, 0, ...0, `tit/p

t
it
, 0, ...0]

6: ∀i : wt+1
i = wti exp (−η ˆ̀t

i)
7: end for

Algorithm 2: EXP3 Algorithm

Theorem 15.7 ∀i: E[
∑T
t=1 p

t`t −mini∈[n]
∑T
t=1 `

t
i] ≤

logn
η + η

2Tn
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Proof: Let φt = − 1
η log(

∑n
i=1 w

t
i). Notice :

φt+1 − φt = −1

η
log(

∑n
i=1 w

t+1
i∑n

i=1 w
t
i

) (15.9)

= −1

η
log(

∑n
i=1 w

t
i exp (−η ˆ̀t

i)∑n
i=1 w

t
i

) (15.10)

Let x be a random variable taking value ˆ̀t
i with probability pti =

wt
i∑n

j=1 w
t
j
:

= −1

η
log(

n∑
i=1

pti exp (−η ˆ̀t
i)) (15.11)

= −1

η
log E

x
[exp (−ηx)] (15.12)

By lemma 15.4:

≥ −1

η
(−ηE

x
[x] +

η2

2
E
x

[x2]) (15.13)

Because E[x] = ~pt · ~̂`t:

= ~pt · ~̂`t − η

2

n∑
i=1

pti(
ˆ̀t
i)

2 (15.14)

Recall Eit∼pt [
~̂
`t] = ~̀t:

E
it∼pt

[φt+1 − φt|i1 . . . it−1] ≥ E
it∼pt

[~pt · ~̂`t − η

2

n∑
i=1

pti(
ˆ̀t
i)

2|i1 . . . it−1] (15.15)

= ~pt · ~̀t − η

2
E

it∼pt
[

n∑
i=1

pti(
ˆ̀t
i)

2|i1 . . . it−1] (15.16)

Because
~̂
`t is a function of i1 . . . it−1 and ˆ̀t

j = 0 for all j 6= i:

= ~pt · ~̀t − η

2
E

it∼pt
[pti(

ˆ̀t
i)

2] (15.17)

= ~pt · ~̀t − η

2

n∑
i=1

pti(p
t
i(

ˆ̀t
i)

2) (15.18)

= ~pt · ~̀t − η

2

n∑
i=1

pti(p
t
i(
`ti
pti

)2) (15.19)

≥ ~pt · ~̀t − η

2
n (15.20)
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By the law of total expectation:

E
it∼pt

[φT+1 − φ1] = E
it∼pt

[

T∑
t=1

φt+1 − φt] (15.21)

= E
it∼pt

[

T∑
t=1

E
it∼pt

[φt+1 − φt|i1 . . . iT−1]] (15.22)

≥ E
it∼pt

[

T∑
t=1

pt`t]− η

2
nT (15.23)

= E[LT (EXP3)]− η

2
nT (15.24)

At time t = T + 1:

wT+1
i = exp (−η

T∑
i=1

ˆ̀t
i) (15.25)

φT+1 = −1

η
log(

n∑
i=1

wT+1
i ) (15.26)

≤ −1

η
log(wT+1

i ) (15.27)

= −1

η
log(exp (−η

T∑
i=1

ˆ̀t
i)) (15.28)

=

T∑
i=1

ˆ̀t
i (15.29)

=⇒ E
it∼pt

[φT+1 − φ1] ≤
T∑
i=1

ˆ̀t
i − φ1 ≤

T∑
i=1

ˆ̀t
i +

log n

η
, (15.30)

provided that

φ1 = − log n

η
. (15.31)

Therefore:

E[LT (EXP3)]− η

2
nT ≤ E

it∼pt
[φT+1 − φ1] ≤

T∑
i=1

ˆ̀t
i +

log n

η
(15.32)

=⇒ E[LT (EXP3)]−
T∑
i=1

ˆ̀t
i ≤

η

2
nT +

log n

η
(15.33)

=⇒ RegretT (EXP3) ≤ η

2
nT +

log n

η
(15.34)

Corollary 15.8 For η =
√

2 logn
nT , E[RegretT ] ≤

√
2Tn log n.

Notice that this bound is very similar to the regret bounds for other algorithms such as the exponential
weights algorithm, except that Lt(i

∗) is replaced with Tn. This is because the loss of the best expert i∗ is
bounded by T , and because it is now necessary to observe each of the n possible actions in order to accurately
understand the regret.


