CS 7545: Machine Learning Theory Fall 2019

Lecture 1: Course Introduction and Linear Algebra Review

Lecturer: Jacob Abernethy Scribes: Alejandro Carderera and Reuben Tate

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

1.1 Course Introduction

1.1.1 Basic Course Information
Instructor Jacob Abernethy (prof@gatech.edu)
TA’s:

e Zihao Hu (zihaohu@gatech.edu)

e Bhuvesh Kumar (bhuvesh@gatech.edu)

Location: Weber SST III (Lecture Hall 2)
Office Hours: TBA

1.1.2 Pre-requisites

This course expects that students are coming into the course with some basic knowledge of Advanced Linear
Algebra, Graduate Level Probability and Statistics, and Convex Optimization/Analysis. Students that don’t
know at least at least 2 of the 3 topics above will likely struggle with the course.

1.1.3 Course Outline

The following is a brief overview of the topics that will be discussed in the course.
e Basis (review pre-reqs)
e Online Learning

— Useful when data arrives sequentially

— Robust to adversarial settings

— Applications:
% Sequential optimization algorithms, Stochastic Gradient Descent (SGD)
* Solving zero-sum games
x Reinforcement learning, “bandits”

e Statistical Learning Theory

— Focusing on generalization guarantees when data points are iid.

— Bounding/Controlling the difference between training/testing error due to bias-variance tradeoff
(See Figure 1.1)

— Vapnik-Chervonenkis (VC) Theory

— Uniform Deviation


mailto:zihaohu@gatech.edu
mailto:bhuvesh@gatech.edu
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Figure 1.1: Observe that as we do more iterations, the training error decreases; however, at some point, the
test error stops decreasing and begins to increase instead.

— Sauer’s Lemma

e Current theoretical results currently work well in practice (i.e. in deep learning). In other words, they
seem to do better than what we can prove.

e Old Page: mltheory.github.io

1.1.4 Course Logistics
e Grade Breakdown

— Homework: 50% (5 homeworks)
— Final: 40%
— Scribe: 10%

e Scribe Notes: due one week after lecture. They will be graded but there will be an opportunity to
revise.

e Textbook: (will follow lightly) Foundations of Machine Learning by Mohri et al., 2nd edition.
e Use Piazza for homework/content discussions and also for any questions regarding policies.

e Only email the professor if it’s a personal issue.

e Homework solutions need to be in KTEX.

e Homework 1 will be released soon to give students an idea of what to expect regarding the homework
in the course.

e A list of things this course doesn’t cover is graphical models, PyTorch, or TensorFlow.

e Homework in the course will have no/minimal programming.


mltheory.github.io
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1.2 Linear Algebra Review

The following conventions will be used throughout the course.
e Matrices in R™*™ will be denoted as: M.
e A vector in R™ will be denoted as: .

e To refer to the ¢ — th element in a vector we use x;.

1.2.1 Positive Semidefinite (PSD) and Positive Definite (PD) matrices.

Definition 1.1 (Positive Semidefinite (PSD) Matrix) A symmetric matrizc M € R™™ s said to be
Positive Semidefinite (PSD), also denoted as M = 0, if and only if:

ZTMZ >0,

for all € R™. This is equivalent to all the eigenvalues of M being non-negative (greater then or equal to
zero).

Definition 1.2 (Positive Definite (PD) Matrix) A symmetric matric M € R™*" is said to be Positive
Definite (PD), also denoted as M > 0, if and only if:

ZTMZE >0,

for all T € R™\ 0. This is equivalent to all the eigenvalues of M being positive (greater than zero).

1.2.2 Norms.

Definition 1.3 (Norm) A function || - || : R™ — [0,00) is a norm when the following are satisfied:
o Identity of Indiscernibles: ||| = 0 if and only if Z = 0.
o Absolute Homogeneity: ||aZ|| = |a|||Z]| for all £ € R™ and a € R.

e Triangle Inequality: ||Z+ y|| < ||Z]| + ||| for all T,y € R™.

Examples

n
e (5 norm: [T =/ 22,
\/ i=1

e (y norm: ||Z||; = >, |

o /o, norm: ||Z]|e = 1r£fx<xn|xi|.

e £, (p € (1,50)) norm: ]|, = (/ > feile.

e M-norm (M € R™*" is PD): ||Z||; = VZT MZ.

Note that the /3, ¢; and ¢, norms are special cases of the £, norm. The following example proof shows
how [, satisfies the properties of norms in Definition 1.3.
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Example Proof: In order to prove that the |||« is a valid norm, we must prove that the three norm
properties are satisfied.

e Identity of Indiscernibles: ||| = max |z;| = 0 if and only if |z;| = 0 for all ¢ € [1,n].

1<i
e Absolute Homogeneity: ||af]. = max lax;| = |af nax |z:] = ||| %] oo -
e Triangle Inequality: ||+ = Jmax |z; +yi| < max. |zi [+ yi| < 1515;%(71 il +1y5] = |1 Zlloo + [Tl oo
Definition 1.4 (Dual Norm) Given a norm || - || we define the dual norm || - ||« as:

”g”* = sup <fvg>7
reR™
lZ]l=1

where (-,-) : R x R™ — R denotes the standard dot product.

Claim 1.5 The {5 norm is self-dual (its dual norm is itself).
Proof:

N - . 1 .
muﬁzsw<am=sw< 4§— ) = 2,
TER™ |

B zern \[IZ]277/ 1192
Z||2=

where the key resides in the fact that the inner product is maximized by making & and y collinear and have
the same direction. ]

(Exercise) Prove that the £, norm is dual to the ¢, norm when:

1 1
4=,
p q

(Exercise) Prove that for a PSD matrix M the dual norm to the M-norm is the M ~!-norm, where M ~!
denotes the inverse of M.

Theorem 1.6 (Hoélders Inequality) Let || - || and || - ||« be dual norms. Then for every Z,y € R™:

(@9 < | Z/l|F]l--

Proof:

—_

8

Il = sup @mz<,@@m.

ZeRn || 7=1]| 1Z]l 1Z]l

Reordering the terms this leads to desired inequality. [ |
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