CS7545, Spring 2024: Machine Learning Theory - Solutions \#3

Due: Apr. 5

1) Doubling Trick. Let $k=\left\lceil\log _{2} T\right\rceil$. Let $T_{i}=2^{i-1}$ for $i=1, \ldots, k$, so that $T \leq \sum_{i=1}^{k} T_{i}$. So, the bound is (asymptotically)

$$
\sum_{i=1}^{k} \sqrt{M T_{i}}=\sqrt{M \sum_{i=1}^{k} 2^{i-1}}=\sqrt{M} \frac{\sqrt{2}^{k}-1}{\sqrt{2}-1} \leq \sqrt{M} \frac{\sqrt{2 T}-1}{\sqrt{2}-1}=O(\sqrt{M T})
$$

2) Dynamic Regret. We have

$$
\begin{aligned}
\operatorname{Regret}_{T} & \leq \sum_{t=1}^{T} \frac{\eta}{2} G^{2}+\sum_{t=1}^{T} \frac{\left(\left\|\mathbf{w}_{t}-\mathbf{w}_{t}^{*}\right\|\right)^{2}-\left(\left\|\mathbf{w}_{t+1}-\mathbf{w}_{t}^{*}\right\|\right)^{2}}{2 \eta} \\
& \leq \frac{T G^{2} \eta}{2}+\sum_{t=1}^{T} \frac{\left(\left\|\mathbf{w}_{t}\right\|^{2}-2\left\langle\mathbf{w}_{t}, \mathbf{w}_{t}^{*}\right\rangle+\left\|\mathbf{w}_{t}^{*}\right\|^{2}-\left\|\mathbf{w}_{t+1}\right\|^{2}+2\left\langle\mathbf{w}_{t+1}, \mathbf{w}_{t}^{*}\right\rangle-\left\|\mathbf{w}_{t}^{*}\right\|^{2}\right)}{2 \eta} \\
& \leq \frac{T G^{2} \eta}{2}+\frac{1}{2 \eta}\left(\left\|\mathbf{w}_{1}\right\|^{2}-\left\|\mathbf{w}_{T+1}\right\|^{2}\right)+\frac{1}{\eta} \sum_{t=1}^{T}\left\langle\mathbf{w}_{t+1}-\mathbf{w}_{t}, \mathbf{w}_{t}^{*}\right\rangle \\
& \leq \frac{T G^{2} \eta}{2}+\frac{D^{2}}{2 \eta}+\frac{1}{\eta}\left(\left\langle\mathbf{w}_{T+1}, \mathbf{w}_{T}^{*}\right\rangle-\left\langle\mathbf{w}_{1}, \mathbf{w}_{1}^{*}\right\rangle\right)+\frac{1}{\eta} \sum_{t=2}^{T}\left\langle\mathbf{w}_{t-1}^{*}-\mathbf{w}_{t}^{*}, \mathbf{w}_{t}\right\rangle \\
& \leq \frac{\eta G^{2} T}{2}+\frac{7 D^{2}}{4 \eta}+\frac{D}{\eta} \sum_{t=2}^{T}\left\|\mathbf{w}_{t}^{*}-\mathbf{w}_{t-1}^{*}\right\| \\
& \leq \frac{\eta G^{2} T}{2}+\frac{7 D^{2}+4 D P_{T}}{4 \eta} .
\end{aligned}
$$

where we use the following relation

$$
\begin{array}{r}
\left\|\mathbf{w}_{1}\right\|^{2}=\left\|\mathbf{w}_{1}-\mathbf{0}\right\|^{2} \leq D^{2}, \\
\mathbf{w}_{T+1}^{\top} \mathbf{w}_{T}^{*} \leq\left\|\mathbf{w}_{T+1}\right\|\left\|\mathbf{w}_{T}^{*}\right\| \leq D^{2}, \\
-\mathbf{w}_{1}^{\top} \mathbf{w}_{1}^{*} \leq \frac{1}{4}\left\|\mathbf{w}_{1}-\mathbf{w}_{1}^{*}\right\|^{2} \leq \frac{1}{4} D^{2}, \\
\left\langle\mathbf{w}_{t-1}^{*}-\mathbf{w}_{t}^{*}, \mathbf{w}_{t}\right\rangle \leq\left\|\mathbf{w}_{t-1}^{*}-\mathbf{w}_{t}^{*}\right\|\left\|\mathbf{w}_{t}\right\| \leq D\left\|\mathbf{w}_{t-1}^{*}-\mathbf{w}_{t}^{*}\right\| .
\end{array}
$$

3) Parameter Tuning.

(a) The minimum occurs when $T \eta=\eta^{-2}$. So, $\eta=T^{-1 / 3}$. So, the upper bound is $O\left(T^{-2 / 3}\right)$.
(b) Due to the exponential term, η must have the form $\log f(T)$ for some sub-linear function f of T. Furthermore, the first term $\frac{T}{\eta}$ requires that f is an increasing function of T. For example, we can choose $\eta=\log \sqrt{T}$, and the upper bound becomes $\frac{T}{\log \sqrt{T}}+\sqrt{T}$, which is sublinear.
(c) At the minimum, all three terms are equal. So, we want $\frac{T \epsilon}{\eta}=T \eta$, and $\frac{T \epsilon}{\eta}=\frac{N}{\epsilon}$

The first condition implies $\epsilon=\eta^{2}$. The second condition implies $T \epsilon^{2}=N \eta$, which then implies $\eta=$ $\left(\frac{N}{T}\right)^{1 / 3}$ after the substitution $\epsilon=\eta^{2}$,
So, we get an upper bound $3 T \eta=O(T \eta)=O\left(T^{\frac{2}{3}} N^{\frac{1}{3}}\right)$.
(d) For simplicity, we let $f(\eta, \epsilon)=\frac{\log N}{\eta}+\frac{\eta T}{\epsilon^{2}}+2 \epsilon T$, which is an upper bound of the original objective. Taking the derivative and setting to zero, we have

$$
\frac{\partial f}{\partial \epsilon}=-2(\eta T) \epsilon^{-3}+2 T=0
$$

which implies $\epsilon^{*}=\eta^{\frac{1}{3}}$. It is obvious that this is the global minimum. Plugging into f, we have

$$
f\left(\eta ; \epsilon^{*}\right)=\frac{\log N}{\eta}+3 \eta^{\frac{1}{3}} T
$$

We can again take the derivative w.r.t. η, then we have

$$
\frac{\partial f}{\partial \eta}=-\frac{\log N}{\eta^{2}}+\eta^{-\frac{2}{3}} T=0
$$

and we get

$$
\eta^{*}=\left(\frac{\log N}{T}\right)^{\frac{3}{4}}
$$

We have

$$
f\left(\eta^{*}, \epsilon^{*}\right)=4(\log N)^{\frac{1}{4}} T^{\frac{3}{4}}=O\left((\log N)^{\frac{1}{4}} T^{\frac{3}{4}}\right)
$$

which is an upper bound of our original objective.
(e) Write the bound as

$$
\frac{\log N}{1-\exp (-\eta)}+\frac{\eta T}{1-\exp (-\eta)}
$$

The first term is a decreasing function of η, and the second term is an increasing function of η (To verify, take the derivative $\left.\frac{e^{n}\left(e^{n}-n-1\right)}{\left(e^{n}-1\right)^{2}}>0, \forall n>0\right)$. Since $T \gg \log N$, the optimal value for η must be small, say less than 1.
Note that for $\eta \in(0,1)$,

$$
\frac{\eta}{1-e^{-} \eta} \leq(\eta+1)
$$

and

$$
(1-\exp (-\eta))^{-1} \leq 2 / \eta
$$

Using the above inequalities, the bound becomes

$$
\frac{\log N}{1-\exp (-\eta)}+\frac{\eta T}{1-\exp (-\eta)} \leq \frac{2 \log N}{\eta}+(1+\eta) T=\left(\frac{2 \log N}{\eta}+\eta T\right)+T
$$

Take $\eta \leftarrow \sqrt{\frac{2 \log N}{T}}$ and we have an upper bound $O(\sqrt{2 T \log N}+T)$.
4) Online Non-Convex Optimization. We partition X into 2 -norm ϵ-balls. Each ϵ ball has size $O\left(\epsilon^{n}\right)$ and we need $N:=O\left(1 / \epsilon^{n}\right)$ of those to cover X. We treat each ball as an expert and run Hedge.
Hedge suffers $O(\sqrt{T \log N})$ regret with respect to the best expert. Now we need to analyze the best expert's regret with respect to the best fixed-point prediction. Let $x^{*}=\arg \min _{x \in X} \sum_{t} f_{t}(x)$. Then, one of the experts must satisfy $\left\|x-x^{*}\right\|_{2} \leq \epsilon$, which by Lipschitz assumption, implies $f_{t}(x)-f_{t}\left(x^{*}\right) \leq \epsilon$ for all t. So, the best expert suffers at most $T \epsilon$ regret with respect to the best fixed-point prediction. The total regret of the algorithm is therefore upper-bounded by

$$
O(\sqrt{T \log N}+T \epsilon)=O\left(\sqrt{T n \log \frac{1}{\epsilon}}+T \epsilon\right)
$$

Set $\epsilon=1 / T$, and the regret now becomes $O(\sqrt{n T \log T})$.

