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1) Doubling Trick. Let k = ⌈log2 T ⌉. Let Ti = 2i−1 for i = 1, . . . , k, so that T ≤
∑k

i=1 Ti. So, the

bound is (asymptotically)
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2) Dynamic Regret. We have
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where we use the following relation
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3) Parameter Tuning.

(a) The minimum occurs when Tη = η−2. So, η = T−1/3. So, the upper bound is O(T−2/3).

(b) Due to the exponential term, η must have the form log f(T ) for some sub-linear function f of T .
Furthermore, the first term T

η requires that f is an increasing function of T . For example, we can choose

η = log
√
T , and the upper bound becomes T

log
√
T
+
√
T , which is sublinear.
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(c) At the minimum, all three terms are equal. So, we want Tϵ
η = Tη, and Tϵ

η = N
ϵ

The first condition implies ϵ = η2. The second condition implies Tϵ2 = Nη, which then implies η =(
N
T

)1/3
after the substitution ϵ = η2,

So, we get an upper bound 3Tη = O(Tη) = O(T
2
3N

1
3 ).

(d) For simplicity, we let f(η, ϵ) = logN
η + ηT

ϵ2 + 2ϵT , which is an upper bound of the original objective.
Taking the derivative and setting to zero, we have

∂f
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= −2(ηT )ϵ−3 + 2T = 0,

which implies ϵ∗ = η
1
3 . It is obvious that this is the global minimum. Plugging into f , we have
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We can again take the derivative w.r.t. η, then we have
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which is an upper bound of our original objective.

(e) Write the bound as
logN

1− exp(−η)
+

ηT

1− exp(−η)
.

The first term is a decreasing function of η, and the second term is an increasing function of η (To verify,

take the derivative en(en−n−1)
(en−1)2 > 0,∀n > 0). Since T >> logN , the optimal value for η must be small,

say less than 1.

Note that for η ∈ (0, 1),
η

1− e−η
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and
(1− exp(−η))−1 ≤ 2/η

Using the above inequalities, the bound becomes
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Take η ←
√

2 logN
T and we have an upper bound O(

√
2T logN + T ).

2



CS7545, Spring 2024: Machine Learning Theory - Solutions #3 Due Apr. 5

4) Online Non-Convex Optimization. We partition X into 2 -norm ϵ-balls. Each ϵ ball has size O (ϵn)
and we need N := O (1/ϵn) of those to cover X. We treat each ball as an expert and run Hedge.

Hedge suffers O(
√
T logN) regret with respect to the best expert. Now we need to analyze the best expert’s

regret with respect to the best fixed-point prediction. Let x∗ = argminx∈X

∑
t ft(x). Then, one of the

experts must satisfy ∥x− x∗∥2 ≤ ϵ, which by Lipschitz assumption, implies ft(x)− ft (x
∗) ≤ ϵ for all t. So,

the best expert suffers at most Tϵ regret with respect to the best fixed-point prediction. The total regret of
the algorithm is therefore upper-bounded by

O(
√

T logN + Tϵ) = O

(√
Tn log

1

ϵ
+ Tϵ

)
.

Set ϵ = 1/T , and the regret now becomes O(
√
nT log T ).
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