
CS7545, Spring 2024: Machine Learning Theory - Homework #3

Due: April 5th, 2024

1) The Doubling Trick. In class, we proved the regret of OGD. In the last step of the proof, we showed
that the regret is upper bounded by (Last line of Step 2 in the proof):

RPOGD
T ≤ ηG2T

2
+

D2

2η
.

By optimally tuning η as η = D
G
√
T
, we obtain a bound of the form DG

√
T . The problem with this approach

is that it requires us to know T in advance. Is there a way around this issue?

Imagine constructing a modified algorithm A′ that does the following iterative procedure. A′ starts with
an initial parameter η1, implements the P-OGD algorithm using this step size for T1 rounds, then adjusts
the parameter to η2, and runs P-OGD for T2 rounds, and so forth. Let’s say η gets updated k times, where
T1 + T2 + . . .+ Tk = T .

Can you construct a schedule for the sequence of (ηi, Ti) that achieves the same order of bound as the
optimally tuned bound (namely, O(DG

√
T )), even though T is unknown in advance? In other words, you

want to choose the sequence of T1, T2, . . ., with the associated η1, η2, . . . so that whenever the online learning
procedure truly ends, at a previously unknown T , the bound RA

T = O(
√
MT ) will always hold. (Hint: this

is referred to as a “doubling trick”.)

2) Dynamic Regret. In Lecture 16, we learned how to get the regret guarantee of convex functions by
P-OGD. Note that in regret, the compatetor w∗ is fixed. In this problem, we consider a generalized notation
of regret: dynamic regret, which is defined as

Regret T :=

T∑
t=1

ft (wt)−
T∑

t=1

ft(w
∗
t )

where w∗
t ∈ K and

∑T
t=2 ∥w∗

t −w∗
t−1∥2 ≤ PT . For convenience we assume 0 ∈ K. Can you get the regret

guarantee in terms of G,D, T , and PT ? What is the optimal η in this scenario?

Hint: 1) you can start from

RegretT ≤
T∑

t=1

η

2
G2 +

T∑
t=1

∥wt −w∗
t ∥

2
2 − ∥wt+1 −w∗

t ∥
2
2

2η
,

and consider how to use the definitions of D and PT to finish the telescoping sum. 2) When tuning η in the
final step, consider the upper bound as a function of η, and then try to find the optimal configuration.

3) Tuning Parameters. We are going to imagine we have some algorithm A with a performance bound
that depends on some input values (which can not be adjusted) and some tuning parameters (which can be
optimized). We will use greek letters (α, η, ζ, etc.) for the tuning parameters and capital letters (T,D,N,

1



CS7545, Spring 2024: Machine Learning Theory - Homework #3 Due April 5th, 2024

etc.) for inputs. We would like the bound to be the tightest possible, up to multiplicative constants. For
each of the following, tune the parameters to obtain the optimal bound. Using big-Oh notation is fine to
hide constants, but you must not ignore the dependence on the input parameters. For example, assuming
M,T > 0, imagine we have a performance guarantee of the form:

Performance(A;M,T, ϵ) ≤ Mϵ+
T

ϵ
(1)

and we know ϵ > 0. Then by optimizing the above expression with respect to the free parameter we can set

ϵ =
√

T
M . With this value we obtain Performance(A;M,T, ϵ) = O(

√
MT )

NOTE: I didn’t have to make up this problem, I actually pulled all the bounds below from different papers!

(a) Performance(A;T, η) ≤ max(Tη, η−2)

(b) Performance(A;T, η) ≤ T
η + exp(η). (Note: you needn’t obtain the optimal choice of η here or the

tightest possible bound, but try to tune in order to get a bound that is o(T ) – i.e. the bound should
grow strictly slower than linear in T .)

(c) Performance(A;N,T, η, ϵ) ≤ Tϵ
η + N

ϵ + Tη

(d) Performance(A;N,T, η, ϵ) ≤ logN
η + ηT

ϵ2 + ϵT.

(e) Performance(A;T,N, η) ≤ logN+ηT
1−exp(−η)

4) Online Non-Convex Optimization. Sometimes our nice assumptions don’t always hold. But maybe
things will still work out just fine. For the rest of this problem assume that X ⊂ Rn is the learner’s decision
set, and the learner observes a sequence of functions f1, f2, . . . , fT mapping X → R. The regret of an
algorithm choosing a sequence of x1,x2, . . . is defined in the usual way:

Regret T :=

T∑
t=1

ft (xt)− min
x∈X

T∑
t=1

ft(x)

Wouldn’t it ruin your lovely day if the functions ft were not convex? Maybe the only two conditions you
can guarantee is that the functions ft are bounded (say in [0, 1] ) and are 1-Lipschitz: they satisfy that
|ft(x)− ft (x

′)| ≤ ∥x− x′∥2. Prove that, assuming X is convex and bounded, there exists a randomized
algorithm with a reasonable expected-regret bound. Something like E [RegretT ] ≤

√
nT log T would be

admirable. (Hint: Always good to ask the experts for ideas. And you needn’t worry about efficiency.)

2


