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CS 7545: Machine Learning Theory Due March 1, 2023, 11:59pm

Problem Set 2 Solutions
Instructors: Jake Abernethy, Tyler LaBonte

Problem 1

Problem.

1. Graded. Is it possible for an ERM hypothesis ĥ ∈ H on a set S ⊆ X to have L̂S(ĥ) = 0 but
L(ĥ) = 1? Why or why not? Would this be overfitting or underfitting? What is the role of
the complexity of H in this situation?

2. Graded. Let H be a hypothesis class, ĥ ∈ H be an ERM hypothesis for a sample S, and
h? = arg infh∈H L(h). Show that

ES∼Dm [L̂S(ĥ)] ≤ L(h?) ≤ ES∼Dm [L(ĥ)]. (1)

3. Ungraded, optional. Here are some resources if you would like to study the proof of the no-
free-lunch theorem. Most sources prove a simpler version; the one from class takes a bit more
work. I highly recommend this illustrated proof. For a textbook version, see Section 5.1 “The
No-Free-Lunch Theorem” in Understanding Machine Learning: From Theory to Algorithms.
(Don’t worry about the PAC-learning stuff in Corollary 5.2).

Solution.

1. For a space X with infinite cardinality (e.g., the interval [0, 1]) and a finite set S, we choose the
hypothesis which labels points in S correctly but everything else incorrectly. The generalization
error is 1 because S is a measure zero set in X . This is the most extreme form of overfitting.
Typically, functions like this will exist in only the most complex hypothesis classes (e.g., the
set of all functions), so restricting the complexity of the hypothesis class can prevent this type
of overfitting.

2. By definition of ERM,

ES∼Dm [L̂S(ĥ)] = ES∼Dm [ inf
h∈H

L̂S(h)] ≤ ES∼Dm [L̂S(h?)] = L(h?). (2)

By definition of h?,

L(h?) = inf
h∈H

L(h) = ES∼Dm [ inf
h∈H

L(h)] ≤ ES∼Dm [L(ĥ)]. (3)

Problem 2

Problem. In lecture we showed the following one-sided uniform convergence generalization bound:
for H containing functions h : X → {−1, 1} such that |H| < ∞ and any δ > 0, with probability at
least 1− δ over S ∼ Dm, the following holds for all h ∈ H:

L(h) ≤ L̂S(h) +

√
log |H|+ log 1/δ

2m
. (4)

This bound shows that the estimation error of the empirical risk minimizer goes to zero with
1/
√
m, which is often called the “slow rate”. Interestingly, we did not use any properties of H besides

its size. One may wonder whether there is any advantage to choosing a hypothesis class H′ which
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is the same size as H but contains “better” functions. In fact, it turns out that if all the functions
in H′ have sufficiently low generalization error, we can achieve a “fast rate” of 1/m.

In order to prove the fast rate bound, we need a more sophisticated concentration bound than
Hoeffding’s inequality. Let us state Bernstein’s inequality : Let Z1, . . . , Zm be i.i.d. random variables
with zero mean such that |Zi| ≤ C and Var(Zi) ≤ D for all i. Then for all ε > 0,

Pr

[
1

m

m∑
i=1

Zi ≥ ε

]
≤ exp

(
−(mε2)/2

D + (Cε)/3

)
. (5)

1. Graded. Let H contain functions h : X → {−1, 1} with |H| < ∞. Suppose there exists a
function q : R → R such that L(h) ≤ q(m) for any h ∈ H and S ⊆ X with |S| = m. Use
Bernstein’s inequality to prove that for any δ > 0, with probability at least 1−δ over S ∼ Dm,
the following holds for all h ∈ H:

L(h) ≤ L̂S(h) +

√
2(log |H|+ log 1/δ)q(m)

m
+

2(log |H|+ log 1/δ)

3m
. (6)

Hint. First, define the Zi’s and compute C and D. Then, the rest will be similar to the proof
of our original bound, but with Bernstein instead of Hoeffding. It’s OK if you get different
constants than are listed here.

2. Graded. How should q(m) scale in order to obtain the fast rate? It is sufficient to give an
answer like q(m) = O(?) and explain your reasoning.

3. Ungraded, optional. A more general form of Bernstein’s inequality holds for a very large
class of distributions called subexponential distributions. These distributions are roughly char-
acterized by having heavier tails than a Gaussian – they decay with e−x instead of e−x

2

– and
they come up often in machine learning theory. If you would like to learn more, read sections
2.7 and 2.8 of High-Dimensional Probability.

Solution.

1. Fix some h ∈ H and define Zi = L(h)− 1(h(xi) 6= yi). Note that |Zi| ≤ 1. We have

E[Zi] = L(h)− E[1(h(x) 6= y)] = L(h)− L(h) = 0, (7)

and

Var(Zi) = E[Z2
i ]− E[Zi]

2 (8)

= L(h)2 − 2L(h)E[1(h(x) 6= y)] + E[1(h(x) 6= y)2] (9)

= E[1(h(x) 6= y)2]− L(h)2 (10)

≤ E[1(h(x) 6= y)2] (11)
= E[1(h(x) 6= y)] (12)
= L(h) ≤ q(m). (13)

Furthermore,

1

m

m∑
i=1

Zi =
1

m
(mL(h)−

m∑
i=1

1(h(xi) 6= yi)) = L(h)− L̂S(h). (14)

Therefore, by Bernstein’s inequality,

Pr
[
L(h)− L̂S(h) ≥ ε

]
= exp

(
−(mε2)/2

q(m) + ε/3

)
. (15)
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We can plug this into the proof of the original bound to see that

Pr[∃h ∈ H : L(h)− L̂S(h) ≥ ε] ≤
∑
h∈H

Pr[L(h)− L̂S(h) ≥ ε] ≤ |H| exp

(
−(mε2)/2

q(m) + ε/3

)
. (16)

Setting the right-hand side to δ and solving for ε,

(mε2)/2

q(m) + ε/3
= log |H|+ log 1/δ (17)

=⇒ ε2 − 2(log |H|+ log 1/δ)

3m
ε− 2

m
(log |H|+ log 1/δ)q(m) = 0 (18)

=⇒ ε =
(log |H|+ log 1/δ)

3m
+

√(
(log |H|+ log 1/δ)

3m

)2

+
2

m
(log |H|+ log 1/δ)q(m) (19)

=⇒ ε ≤ 2(log |H|+ log 1/δ)

3m
+

√
2(log |H|+ log 1/δ)q(m)

m
, (20)

where in the last step we used
√
x+ y ≤

√
x+
√
y.

2. We require q(m) = O(1/m) so that the m in the denominator can be factored out of the root.

Problem 3

Problem. In this problem, we will prove a classical bound on the Rademacher complexity of neural
networks. Suppose the input space is X = Rn and we have a training set S = {(xi, yi)}mi=1. Let
φ : R → R be an L-Lipschitz activation function such that φ(0) = 0 (e.g., the ReLU function).
Define the class of neural networks of depth 2 ≤ j ≤ D and width H with `1-bounded weights
recursively as

Fj :=

{
x 7→

H∑
k=1

wkφ(fk(x)) : fk ∈ Fj−1, ‖w‖1 ≤ Bj

}
. (21)

Here, φ is applied elementwise, i.e., φ(x) = (φ(x1), . . . , φ(xn)).

1. Graded. Define F1 := {x 7→ 〈w, x〉 : ‖w‖1 ≤ B1} and suppose ‖xi‖∞ ≤ C for all 1 ≤ i ≤ m.
Prove that

RS(F1) ≤ B1C

√
2 log 2n

m
. (22)

Hint. Use Hölder’s inequality and Massart’s lemma.

2. Graded. Prove that RS(Fj) ≤ 2LBjRS(Fj−1) for 2 ≤ j ≤ D. Hint. Use Hölder’s inequality
and Talagrand’s contraction lemma. You may use part (4) without proof.

3. Graded. Use parts (1) and (2) to show an upper bound on the Rademacher complexity of
RS(FD). (You must use parts (1) and (2)).

4. Ungraded, optional. Prove that if a function class G contains the zero function, then

Eσ

[
sup
g∈G

1

m

∣∣∣∣∣
m∑
i=1

σig(xi)

∣∣∣∣∣
]
≤ 2RS(G). (23)

Solution.

CS 7545 PS #2



CS 7545 4

1. Applying Hölder’s inequality,

RS(F1) = Eσ

[
sup
f∈F1

1

m

m∑
i=1

σif(xi)

]
(24)

= Eσ

[
sup

w:‖w‖1≤B1

1

m

m∑
i=1

σi〈w, xi〉

]
(25)

= Eσ

[
sup

w:‖w‖1≤B1

1

m

〈
w,

m∑
i=1

σixi

〉]
(26)

≤ B1Eσ

[
1

m

∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥
∞

]
. (27)

For 1 ≤ j ≤ n, let aj = (x1j , . . . , xmj) and A = {a1, . . . , an,−a1, . . . ,−an}. Then,∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥
∞

= max
1≤j≤n

∣∣∣∣∣
m∑
i=1

σixi

∣∣∣∣∣
j

= max
1≤j≤n

∣∣∣∣∣
m∑
i=1

σixij

∣∣∣∣∣ = sup
a∈A

m∑
i=1

σiai. (28)

Hence,

Eσ

[
1

m

∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥
∞

]
= Eσ

[
sup
a∈A

1

m

m∑
i=1

σiai

]
= R(A). (29)

Note that ‖aj‖ ≤
√
mmaxi ‖xi‖∞. By Massart’s lemma,

RS(F1) ≤ B1R(A) ≤ B1C

√
2 log 2n

m
. (30)

2. We have

RS(Fj) = Eσ

[
sup
f∈Fj

1

m

m∑
i=1

σif(xi)

]
(31)

= Eσ

 sup
‖w‖1≤Bj

fk∈Fj−1

1

m

m∑
i=1

H∑
k=1

σiwkφ(fk(xi))

 (32)

= Eσ

 sup
‖w‖1≤Bj

fk∈Fj−1

1

m

H∑
k=1

wk

m∑
i=1

σiφ(fk(xi))

 . (33)

Since φ(0) = 0, every Fj contains the zero function. Applying Hölder’s inequality and the
hint,

RS(Fj) ≤ Eσ

 sup
‖w‖1≤Bj

fk∈Fj−1

1

m
‖w‖1 max

1≤k≤H

∣∣∣∣∣
m∑
i=1

σiφ(fk(xi))

∣∣∣∣∣
 (34)

≤ BjEσ

[
sup

f∈Fj−1

1

m

∣∣∣∣∣
m∑
i=1

σiφ(f(xi))

∣∣∣∣∣
]

(35)

= 2BjEσ

[
sup

f∈Fj−1

1

m

m∑
i=1

σiφ(f(xi))

]
. (36)
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Define A = {(f(x1), . . . , f(xm)) : f ∈ Fj−1}. Applying Talagrand’s contraction lemma,

RS(Fj) ≤ 2BjEσ

[
sup
a∈A

1

m

m∑
i=1

σiφ(ai)

]
= 2BjR(φ(A)) ≤ 2LBjR(A) = 2LBjRS(Fj−1). (37)

3. Solving the recurrence from part (2) and substituting the answer from part (1) gives

RS(FD) ≤
D∏
j=2

2LBjRS(Fj−1) = (2L)D−1
D∏
j=2

Bj ·RS(F1) = (2L)D−1
D∏
j=1

Bj · C
√

2 log 2n

m
.

(38)

4. Let A ⊆ R such that 0 ∈ A. Then,

sup
a∈A
|a| = max(sup

a∈A
a,− inf

a∈A
a) ≤ sup

a∈A
a− inf

a∈A
a, (39)

where 0 ∈ A is sufficient for the maximands to be non-negative. Therefore, since G contains
the zero function, we have

Eσ

[
sup
g∈G

∣∣∣ 1

m

m∑
i=1

σig(xi)
∣∣∣] ≤ Eσ

[
sup
g∈G

1

m

m∑
i=1

σig(xi)− inf
g∈G

1

m

m∑
i=1

σig(xi)

]
(40)

= Eσ

[
sup
g∈G

1

m

m∑
i=1

σig(xi)

]
+ Eσ

[
sup
g∈G

1

m

m∑
i=1

−σig(xi)

]
(41)

= 2Eσ

[
sup
g∈G

1

m

m∑
i=1

σig(xi)

]
(42)

= 2RS(G), (43)

where we used the fact that σi and −σi have the same distribution.

Problem 4

Problem. Suppose A ⊆ Rm.

1. Graded. Prove that R(A+ b) = R(A) where A+ b = {a+ b : a ∈ A} for any b ∈ Rm.

2. Graded. Prove that R(cA) = |c|R(A) where cA = {c · a : a ∈ A} for any c ∈ R.

3. Graded. In lecture we proved the following one-sided uniform convergence generalization
bound: for F containing functions f : X → [0, 1] and any δ > 0, with probability at least 1− δ
over S ∼ Dm, the following holds for all f ∈ F :

L(f) ≤ L̂S(f) + 2R(F) +

√
log 1/δ

2m
. (44)

However, to show a bound on the estimation error of ERM we actually needed a two-sided
bound, on supf∈F

∣∣L(f) − L̂S(f)
∣∣. Use parts (1) and (2) to prove one. (You must use parts

(1) and (2)).

4. Challenge, optional, 1 point extra credit. Let S ∼ Dm and suppose F contains functions
f : X → [0, 1]. Prove the symmetrization lower bound, also called the desymmetrization
inequality:

1

2
R(F)−

√
log 2

2m
≤ ES

[
sup
f∈F

∣∣∣L(f)− L̂S(f)
∣∣∣] . (45)
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Solution.

1. Using linearity of expectation,

R(A+ b) = Eσ

[
sup

a′∈(A+b)

1

m

m∑
i=1

σia
′
i

]
(46)

= Eσ

[
sup
a∈A

1

m

m∑
i=1

σi(ai + bi)

]
(47)

= Eσ

[
sup
a∈A

1

m

m∑
i=1

σiai +
1

m

m∑
i=1

σibi

]
(48)

= Eσ

[
sup
a∈A

1

m

m∑
i=1

σiai

]
+ Eσ

[
1

m

m∑
i=1

σibi

]
(49)

= Eσ

[
sup
a∈A

1

m

m∑
i=1

σiai

]
+

1

m

m∑
i=1

biEσi
[σi] (50)

= Eσ

[
sup
a∈A

1

m

m∑
i=1

σiai

]
(51)

= R(A). (52)

2. We have

R(cA) = Eσ

[
sup

a′∈(cA)

1

m

m∑
i=1

σia
′
i

]
= Eσ

[
sup
a∈A

c

m

m∑
i=1

σiai

]
. (53)

If c ≥ 0 then

Eσ

[
sup
a∈A

c

m

m∑
i=1

σiai

]
= Eσ

[
sup
a∈A

|c|
m

m∑
i=1

σiai

]
= |c|Eσ

[
sup
a∈A

1

m

m∑
i=1

σiai

]
. (54)

Otherwise if c < 0 then

Eσ

[
sup
a∈A

c

m

m∑
i=1

σiai

]
= Eσ

[
sup
a∈A

−|c|
m

m∑
i=1

σiai

]
= |c|Eσ

[
sup
a∈A

1

m

m∑
i=1

−σiai

]
. (55)

But since σi and −σi follow the same distribution, the right-hand side in either case is |c|R(A).

3. Define G := {1 − f : f ∈ F}. By parts (a) and (b), we have R(G) = | − 1|R(F) = R(F).
Furthermore,

L(g)− L̂S(g) = Ex∼Dg(x)− 1

m

m∑
i=1

g(xi) (56)

= Ex∼D[1− f(x)]− 1

m

m∑
i=1

(1− f(xi)) (57)

= (1− Ex∼Df(x))− (1− 1

m

m∑
i=1

f(xi)) (58)

=
1

m

m∑
i=1

f(xi)− Ex∼Df(x) (59)

= L̂S(f)− L(f). (60)
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Hence, with probability at least 1− δ1,

sup
f∈F

L(f)− L̂S(f) ≤ 2R(F) +

√
log 1/δ1

2m
, (61)

and with probability at least 1− δ2,

sup
f∈F

L̂S(f)− L(f) = sup
g∈G

L(g)− L̂S(g) ≤ 2R(G) +

√
log 1/δ2

2m
. (62)

Taking a union bound with δ1 = δ2 = δ/2, we have that with probability at least 1− δ,

sup
f∈F

∣∣L(f)− L̂S(f)
∣∣ ≤ 2 max(R(F),R(G)) +

√
log 2/δ

2m
= 2R(F) +

√
log 2/δ

2m
. (63)

4. We have

R(F) = ES,σ

[
sup
f∈F

1

m

m∑
i=1

σif(xi)

]
(64)

= ES,σ

[
sup
f∈F

1

m

m∑
i=1

σif(xi)

]
− Eσ

[
sup
f∈F

1

m

m∑
i=1

σiL(f)

]
+ Eσ

[
sup
f∈F

1

m

m∑
i=1

σiL(f)

]
(65)

= ES,σ

[
sup
f∈F

1

m

m∑
i=1

σif(xi)− sup
f∈F

1

m

m∑
i=1

σiL(f)

]
︸ ︷︷ ︸

Term 1

+Eσ

[
sup
f∈F

1

m

m∑
i=1

σiL(f)

]
︸ ︷︷ ︸

Term 2

. (66)

Introducing a ghost sample S′,

Term 1 ≤ ES,σ

[
sup
f∈F

1

m

m∑
i=1

σi(f(xi)− L(f))

]
(67)

= ES,σ

[
sup
f∈F

1

m

m∑
i=1

σi(f(xi)− ES′L̂S′(f))

]
(68)

= ES,σ

[
sup
f∈F

ES′
1

m

m∑
i=1

σi(f(xi)− f(x′i))

]
(69)

≤ ES,S′,σ

[
sup
f∈F

1

m

m∑
i=1

σi(f(xi)− f(x′i))

]
. (70)

By symmetrization,

Term 1 ≤ ES,S′
[

sup
f∈F

1

m

m∑
i=1

(f(xi)− f(x′i))

]
(71)

= ES,S′
[

sup
f∈F

1

m

m∑
i=1

(f(xi)− L(f) + L(f) + f(x′i))

]
(72)

≤ ES

[
sup
f∈F

1

m

m∑
i=1

(f(xi)− L(f))

]
+ ES′

[
sup
f∈F

1

m

m∑
i=1

(L(f)− f(x′i))

]
(73)

= ES

[
sup
f∈F

L̂S(f)− L(f)

]
+ ES′

[
sup
f∈F

L(f)− L̂S′(f)

]
(74)

≤ 2ES

[
sup
f∈F

∣∣∣L(f)− L̂S(f)
∣∣∣] . (75)
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For Term 2, note that f(x) ∈ [0, 1] implies L(f) ∈ [0, 1]. Consider the expression Q =
L(f)

∑m
i=1 σi. If the sum is positive, then Q is maximized when L(f) = 1. Likewise, if the

sum is negative, then Q is maximized when L(f) = 0. Hence by Massart’s lemma,

Term 2 ≤ Eσ

[
max

(
1

m

m∑
i=1

σi · 0,
1

m

m∑
i=1

σi · 1

)]
= Eσ

[
max
a∈(~0,~1)

1

m

m∑
i=1

σiai

]
≤
√

2 log 2

m
. (76)

The result follows by combining the upper bounds on Term 1 and Term 2.

Problem 5

Problem. In lecture we studied the growth function for classes of functions taking values in the set
{−1, 1}, but the same definition applies to classes of functions taking values in the finite set Y. In
this case, ΠH(m) ≤ |Y|m (analogous to 2m in the original setup).

1. Graded. Let H1 ⊆ {h : X → Y1} and H2 ⊆ {h : X → Y2} be function classes and let
H3 ⊆ {h : X × X → Y1 × Y2} such that H3 = {(h1, h2) : h1 ∈ H1, h2 ∈ H2}. Show that

ΠH3
(m) = ΠH1

(m) ·ΠH2
(m). (77)

2. Graded. Let H1 ⊆ {h : X → Y1} and H2 ⊆ {h : Y1 → Y2} be function classes and let
H3 ⊆ {h : X → Y2} such that H3 = {h2 ◦ h1 : h1 ∈ H1, h2 ∈ H2}. Show that

ΠH3
(m) ≤ ΠH1

(m) ·ΠH2
(m). (78)

3. Ungraded, optional. Prove that (2) is tight, i.e., exhibit X ,Y1,Y2,H1,H2,m such that
ΠH3(m) = ΠH1(m) ·ΠH2(m). Hint. You can take |X | = m = 1.

Solution.

1. For any S = ((x1, x
′
1), . . . , (xm, x

′
m)) ⊆ X × X ,

|H3|S | = |{(h3(x1, x
′
1), . . . , h3(xm, x

′
m)) : h3 ∈ H3}| (79)

= |{((h1(x1), h2(x′1)), . . . , (h1(xm), h2(x′m))) : h1 ∈ H1, h2 ∈ H2}| (80)
= |{(h1(x1), . . . , h1(xm)) : h1 ∈ H1}| · |{(h2(x′1), . . . , h2(x′m)) : h2 ∈ H2}| (81)
= |H1|S | · |H2|S | (82)

Hence ΠH3(m) = ΠH1(m) ·ΠH2(m).

2. For any S = (x1, . . . , xm) ⊆ X ,

H3|S = {(h3(x1), . . . , h3(xm)) : h3 ∈ H3} (83)
= {(h2(h1(x1)), . . . , h2(h1(xm))) : h1 ∈ H1, h2 ∈ H2} (84)

=
⋃

u∈H1|S

{(h2(u1), . . . , h2(um)) : h2 ∈ H2}. (85)

Thus,

|H3|S | ≤
∑

u∈H1|S

|{(h2(u1), . . . , h2(um)) : h2 ∈ H2}| (86)

≤
∑

u∈H1|S

ΠH2(m) (87)

= |H1|S | ·ΠH2
(m) (88)

≤ ΠH1
(m) ·ΠH2

(m). (89)

Hence ΠH3
(m) ≤ ΠH1

(m) ·ΠH2
(m).

3. Take X = {a},Y1 = {c, d},Y2 = {e, f}. Define H1 = {a 7→ c, a 7→ d} and H2 = {(c 7→ e, d 7→
f)}. Now H3 = {a 7→ e, a 7→ f}. However, ΠH1

(1) = 2 and ΠH2
(1) = 1, but ΠH3

(1) = 2.
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Problem 6

Problem.

1. Graded. What is the VC-dimension of a union of k intervals on the real line?

2. Graded. What is the VC-dimension of axis-aligned hyperrectangles in Rn?

3. Graded. A simplex in Rn is the intersection of n + 1 halfspaces (not necessarily bounded).
Prove that the VC-dimension of simplices in Rn is O(n2 log n). Hint. Use the VC-dimension
of halfspaces in Rn.

4. Challenge, optional, 1 extra credit point. Prove the best lower bound you can on the
VC-dimension of simplices in Rn. You will receive the extra credit point if you either (i) prove
a lower bound of Ω(n) and show a reasonable attempt at improving it, or (ii) prove a lower
bound better than Ω(n).

Solution.

1. The VC-dimension is 2k. Suppose A is a set of 2k points in R. For any {−1, 1} labeling of
A, we may cover all adjacent 1s with the same interval, and we only need a new interval after
a −1 label. Since there can be at most k sets of adjacent 1s, A is shattered. On the other
hand, any set of size 2k+ 1 cannot be shattered, because we cannot form the label assignment
1,−1, 1,−1, . . . , 1.

2. The VC-dimension is 2n. Let A be the set of standard basis vectors for Rn. Then, A is shattered
because we can adjust the axes of the hyperrectangle individually to include or exclude each
point as desired. On the other hand, any set of size 2n + 1 cannot be shattered. To see this,
consider finding the minimum and maximum values of the points across each dimension and
constructing a hyperrectangle with these bounds. Then, since all the points are distinct, at
least one point x must lie inside the hyperrectangle (or on its boundary, but not at a vertex).
We cannot form the label assignment where every point is labelled 1 except for x which is
labelled −1.

3. Let H denote a hypothesis class with VC-dimension d and S denote the class of simplices in
Rn. Recall from the Sauer-Shelah lemma that VC(H) = d implies ΠH(m) ≤ md, and the
definition of shattering m points is ΠH(m) = 2m.
Suppose H∩k is the intersection of k hypotheses from H. Then since each hypothesis has
at most ΠH(m) distinct labelings, we must have ΠH∩k(m) ≤ (ΠH(m))k for any m. Hence,
ΠH∩k(m) ≤ mdk. To show VC(H∩k) < m we can show ΠH∩k(m) < 2m, that is mdk < 2m.
Taking logs, this is equivalent to dk logm < m. Setting m = 2dk log dk, we find 2dk log dk <
(dk)2, which is true when dk > 4. So VC(H∩k) = O(dk log dk). Since a simplex in Rn is the
intersection of n+ 1 halfspaces, and halfspaces have VC-dimension n+ 1, we obtain

VC(S) = O((n+ 1)2 log(n+ 1)2) = O(n2 log n). (90)

4. A lower bound of Ω(n) can be obtained by noticing that simplices can shatter any n+1 affinely
independent points. In particular, let S be the simplex with these points as its vertices. Then,
any labeling of these points can be achieved by “wiggling” one of the halfspaces at each vertex
v so that v is included or not included in the simplex. Formally, let x be some point strictly
inside S and let ε > 0 be small. Then for each vertex v labelled −1, pick one of the halfspaces
H which intersect at v. Since a hyperplane in Rn is defined by n points, let H ′ be the halfspace
formed by the n− 1 other points forming H as well as the point y = (1− ε)v + εx. The new
simplex S′ formed by using H ′ instead of H is still an intersection of n+ 1 halfspaces, and it
contains all the original vertices except v.
A lower bound of Ω(n2) can be found in Lemma 3.7 of this paper, and a (much harder)
lower bound of Ω(n2 log n) was recently proved in this paper. Hence, the VC-dimension of the
simplex is indeed Θ(n2 log n).
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