CS7545, Spring 2024: Machine Learning Theory - Solutions #1

Jacob Abernethy, Tyler Labonte, Guanghui Wang, Yeojoon Youn Due: Friday, February 2 at 11:59 p.m.

1) **Norm.** We will prove a generic statement which implies (a)-(d).

Let $p > q \ge 1$, and r be a number such that $\frac{1}{p} + \frac{1}{r} = \frac{1}{q}$. Then, q < p, r and $(\frac{p}{q}, \frac{r}{q})$ is a conjugate norm pair. Let $\mathbf{a} \in \mathbb{R}^N$ such that $a_i = |x_i|^q$, and let $\mathbf{y} = (1, \dots, 1) \in \mathbb{R}^N$. Now we use Holder's inequality:

$$\mathbf{a}^{\top}\mathbf{y} = \sum_{i=1}^{N} |x_i|^q \le \|\mathbf{a}\|_{\frac{p}{q}} \|\mathbf{y}\|_{\frac{r}{q}} = \left(\sum_{i=1}^{N} |x_i|^p\right)^{\frac{q}{p}} n^{\frac{q}{r}}.$$

By exponentiating each side with 1/q, we get

$$\|\mathbf{x}\|_q \le \|\mathbf{x}\|_p n^{\frac{1}{r}} = \|\mathbf{x}\|_p n^{\frac{1}{q} - \frac{1}{p}}$$

Also note that

$$\|\mathbf{x}\|_{q}^{p} = \left(\sum_{i=1}^{N} |x_{i}|^{q}\right)^{\frac{p}{q}} \ge \sum_{i=1}^{N} |x_{i}|^{p} = \|\mathbf{x}\|_{p}^{p}$$

which implies $\|\mathbf{x}\|_q \ge \|\mathbf{x}\|_p$. The inequality follows since $(\sum |x_i|)^{\alpha} \ge \sum |x_i|^{\alpha}$ whenever $\alpha \ge 1$. For part e), from the above result, we get

$$\|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_p \le N^{\frac{1}{p}} \|\mathbf{x}\|_{\infty}$$

Thus, when we apply $\lim_{p\to+\infty}$ to the above inequality, we finally obtain

$$\|\mathbf{x}\|_{\infty} \leq \lim_{p \to +\infty} \|\mathbf{x}\|_{p} \leq \|\mathbf{x}\|_{\infty} \Rightarrow \lim_{p \to +\infty} \|\mathbf{x}\|_{p} = \|\mathbf{x}\|_{\infty}$$

2) Hölder.

(a) Let p > 1 such that $\frac{1}{p} + \frac{1}{q} = 1$.Consider the following two vectors:

$$\mathbf{x}, \mathbf{y} \in \mathbb{R}^N : x_i = p_i^{\frac{1}{q}-1}, y_i = p_i^{\frac{1}{p}}$$

then by Hölder's Inequality,

$$\|\mathbf{x}\|_q \|\mathbf{y}\|_p \ge \mathbf{x}^T \mathbf{y} = \sum_i p_i^{\frac{1}{p} + \frac{1}{q} - 1} = N.$$

where $\|\mathbf{x}\|_{q} = (\sum_{i} p_{i}^{1-q})^{\frac{1}{q}}$ and $\|\mathbf{y}\|_{p} = 1$. Therefore,

$$\sum_{i} \left(\sum_{i} \frac{1}{p_i^{q-1}} \right)^{\frac{1}{q}} \ge N \Rightarrow \sum_{i} \frac{1}{p_i^{q-1}} \ge N^q.$$

Remark. You can also use Jensen's inequality. Consider the function $f(p) = \frac{1}{p^q}$ and note that $f(\sum_{i=1}^N p_i p_i) \leq \sum_{i=1}^N p_i f(p_i)$.

(b) By Jensen's Inequality,

$$\sum_{i} p_i^2 \ge \sum_{i} \frac{p_i}{N} = \frac{1}{N}$$

Therefore, we have

$$\sum_{i} \left(\frac{1}{p_i} + p_i\right)^2 = \sum_{i} p_i^2 + \sum_{i} 2 + \sum_{i} \frac{1}{p_i^2} \ge \frac{1}{N} + 2N + N^3.$$

Remark. You can use 1(a) to show that $\sum_i p_i^2 = \|\mathbf{p}\|_2^2 \ge \frac{\|\mathbf{p}\|_1^2}{N}$.

3) Convexity.

(a) For the convexity of the given function, we need to show $f(\frac{p+q}{2}) \leq \frac{f(p)+f(q)}{2}$ for $\forall p, q \in \Delta_N$. By the definition,

$$f(\frac{p+q}{2}) = \sum_{i=1}^{N} \frac{p_i + q_i}{2} \log(\frac{p_i + q_i}{2})$$

Here, let $g(x) = x \log x$ for a scalar x (0 < x < 1). Since $g''(x) = \frac{1}{x} > 0$, we know that g(x) is convex. Thus, we get

$$f(\frac{p+q}{2}) = \sum_{i=1}^{N} \frac{p_i + q_i}{2} \log(\frac{p_i + q_i}{2})$$
$$\leq \sum_{i=1}^{N} \frac{p_i \log p_i + q_i \log q_i}{2} = \frac{f(p) + f(q)}{2}$$

(b) Since the function g is convex, we know

$$\nabla g(x)^T (y - x) \le g(y) - g(x)$$

$$\nabla g(y)^T (x - y) \le g(x) - g(y)$$

Thus, we obtain

$$\begin{aligned} (\nabla g(x) - \nabla g(y))^T (x - y) &= \nabla g(x)^T (x - y) - \nabla g(y)^T (x - y) \\ &\geq g(x) - g(y) - (g(x) - g(y)) = 0 \end{aligned}$$

4) Fenchel.

(a) The conjugate of f_{α} is defined as

$$f_{\alpha}^{*}(\theta) = \sup_{\mathbf{x}} \mathbf{x}^{T} \theta - f_{\alpha}(\mathbf{x}) = \alpha \left(\sup_{\mathbf{x}} \mathbf{x}^{T} \frac{\theta}{\alpha} - f(\mathbf{x}) \right) = \alpha g \left(\frac{1}{\alpha} \theta \right).$$

(b) The conjugate of f is defined as

$$f^*(\theta) = \sup_x x\theta - \sqrt{1+x^2}.$$

Let $h(x,\theta) = x\theta - \sqrt{1+x^2}$. As h is strictly concave in x, $\frac{\partial h(x,\theta)}{\partial x}$ has at most one zero for a fixed θ . We have

$$\frac{\partial h(x,\theta)}{\partial x} = \theta - \frac{x}{\sqrt{1+x^2}}$$

As $\left|\frac{x}{\sqrt{1+x^2}}\right| < 1$ for all $x \in \mathbb{R}$, consider the three cases:

- $|\theta| > 1$, then $h(x, \theta)$ is monotonic in x since $|\frac{\partial h(x, \theta)}{\partial x}| > |\theta| 1 > 0$. Therefore $f^*(\theta)$ is not defined.
- $|\theta| < 1$, then the supremum is achieved where the gradient is zero, i.e., $x = \frac{\theta}{\sqrt{1-\theta^2}}$. Therefore we have $f^*(\theta) = -\sqrt{1-\theta^2}$.
- $|\theta| = 1$. For $\theta = 1$ the gradient approaches 0 as x goes to infinity, and hence

$$f^*(\theta) = \lim_{x \to \infty} x - \sqrt{1 + x^2} = 0.$$

Similarly, we have $f^*(-1) = 0$.

To summerize, we have $f^*(\theta) = -\sqrt{1-\theta^2}, \theta \in [0,1].$

5) **Hoeffding.** Often Hoeffding's Inequality is stated in a different way. Make sure to use Hoeffding to prove this version.

Let X_1, \ldots, X_m be *m* independent random variables sampled from the same distribution *D*, where *D* has support on [-1, 1], and the mean of *D* is μ . Then for some $\alpha, \beta, \gamma > 0$ we have the following statement: with probability at least $1 - \delta$

$$\left|\frac{1}{m}\sum_{i=1}^{m}X_{i}-\mu\right| \leq \alpha \sqrt{\frac{\log(\beta/\delta)}{\gamma m}}.$$

When you solve this problem, make sure to get the best values of α, β, γ !

Since $\mathbb{E}[X_i] = \mu, X_i \in [-1, 1]$, we know that $\mathbb{E}[X_i - \mu] = 0, X_i - \mu \in [-1 - \mu, 1 - \mu]$. Thus, by the Hoeffding's Inequality, we get

$$\Pr(\frac{1}{m}\sum_{i=1}^{m} X_i - \mu > \frac{t}{m}) = \Pr(\sum_{i=1}^{m} (X_i - \mu) > t)$$
$$\leq \exp(-\frac{2t^2}{\sum_{i=1}^{m} (a_i - b_i)^2}) = \exp(-\frac{t^2}{2m})$$

Similarly, we obtain

$$\Pr(\frac{1}{m}\sum_{i=1}^{m} X_i - \mu < -\frac{t}{m}) \le \exp(-\frac{t^2}{2m})$$
(1)

Therefore, when $\exp(-\frac{t^2}{2m}) = \frac{\delta}{2}$, we get $\left|\frac{1}{m}\sum_{i=1}^{m}X_i - \mu\right| \leq \frac{t}{m}$ with probability at least $1 - \delta$. From $\exp(-\frac{t^2}{2m}) = \frac{\delta}{2}$, we represent t with δ .

$$t = \sqrt{2m\log\frac{2}{\delta}}$$

Therefore, we finially get

$$\frac{t}{m} = \sqrt{\frac{2}{m}\log\frac{2}{\delta}} = \alpha \sqrt{\frac{\log(\beta/\delta)}{\gamma m}}$$
$$\to \alpha = 2, \beta = 2, \gamma = 2$$

6) Bayes classifier.

(a) Recall that $\eta(x) = \Pr[Y = 1 | X = x]$. Show that

$$\eta(x) = \frac{1}{1 + \exp(\frac{-x\mu}{\sigma^2})}.$$

Hint. Use Bayes' rule.

Using Bayes' rule we have

$$\eta(x) = \frac{\Pr[X = x | Y = 1] \Pr[Y = 1]}{\Pr[X = x]}.$$
(2)

Denote the pdf of the first Gaussian by f_1 and the second Gaussian by f_2 . Then, $\Pr[Y = 1] = 1/2$, $\Pr[X = x|Y = 1] = f_1(x)$, and $\Pr[X = x] = f_1(x)/2 + f_2(x)/2$. Hence, $\eta(x) = f_1(x)/(f_1(x) + f_2(x))$. Substituting in for the Gaussian pdf,

$$\eta(x) = \frac{\exp\left(-\frac{1}{2}\left(\frac{x-\frac{\mu}{2}}{\sigma}\right)^2\right)}{\exp\left(-\frac{1}{2}\left(\frac{x-\frac{\mu}{2}}{\sigma}\right)^2\right) + \exp\left(-\frac{1}{2}\left(\frac{x+\frac{\mu}{2}}{\sigma}\right)^2\right)}$$
(3)

$$= \frac{1}{1 + \frac{\exp\left(-\frac{1}{2}\left(\frac{x+\frac{\mu}{2}}{\sigma}\right)^2\right)}{\exp\left(-\frac{1}{2}\left(\frac{x-\frac{\mu}{2}}{\sigma}\right)^2\right)}}$$
(4)

$$=\frac{1}{1+\exp\left(\frac{-x\mu}{\sigma^2}\right)}.$$
(5)

(b) Compute an analytical expression for h_{Bayes} (*i.e.*, substitute $\eta(x)$ and simplify the resulting expression). We have

$$h_{\text{Bayes}}(x) = \begin{cases} 1 & \frac{1}{1 + \exp\left(\frac{-x\mu}{\sigma^2}\right)} \ge 1/2, \\ -1 & \text{else.} \end{cases}$$
(6)

Simplifying the inequality, we find that it reduces to $x \ge 0$. So, $h_{\text{Bayes}}(x) = \text{sgn}(x)$.

(c) Compute the Bayes error $L(h_{\text{Bayes}})$. You can leave your answer in terms of the Gaussian cdf Φ . We have

$$\begin{split} L(h_{\text{Bayes}}) &= \Pr[h_{\text{Bayes}}(x) \neq Y] \\ &= \Pr[\text{sgn}(x) \neq Y] \\ &= \Pr[x > 0 \text{ and } Y = -1] + \Pr[x < 0 \text{ and } Y = 1] \\ &= 2\Pr[x < 0 \mid Y = 1] \Pr[Y = 1] \\ &= \Pr[x < 0 \mid Y = 1] \\ &= \Phi\left(-\frac{\mu}{2\sigma}\right). \end{split}$$

(d) On which point(s) $x \in \mathbb{R}$ is h_{Bayes} most likely to make a mistake? Why?

 h_{Bayes} is most likely to make a mistake on the point x = 0. This is because $\eta(0) = 1/2$, which means the value of Y is essentially a coin flip. Hence, h_{Bayes} will make a mistake with probability 1/2 (which is the maximum probability for a mistake in binary classification).