CS7545, Spring 2024: Machine Learning Theory - Solutions #1

Jacob Abernethy, Tyler Labonte, Guanghui Wang, Yeojoon Youn Due: Friday, February 2 at 11:59 p.m.

1) Norm. We will prove a generic statement which implies (a)-(d).

P r

Let p > ¢ > 1, and r be a number such that % + % = %. Then, g < p,r and (E’ 5) is a conjugate norm pair.
)

Let a € RY such that a; = |z;]9, and let y = (1,...,1) € RY. Now we use Holder’s inequality:
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By exponentiating each side with 1/q, we get

1
=
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Also note that
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which implies ||x||; > ||x||,- The inequality follows since (> |z;|)* > > |#;|* whenever o > 1.
For part e), from the above result, we get
1
[x[loo < lIxllp < N7 |[x[[
Thus, when we apply lim,_, 1 to the above inequality, we finally obtain

Ixlloo < tim_lxlly < lxlo = tim_ ], =

2) Holder.
(a) Let p > 1 such that % + % = 1.Consider the following two vectors:
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then by Holder’s Inequality,
1
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where |x[|; = (32, pkq)% and ||y|l, = 1. Therefore,
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Remark. You can also use Jensen’s inequality. Consider the function f(p) = p% and note that

FOC pipi) < iy pif (pi)-
(b) By Jensen’s Inequality,

Therefore, we have

Remark. You can use 1(a) to show that >, p? = [|p[|3 > 5.
3) Convexity.

(a) For the convexity of the given function, we need to show f (pTﬂ) < M for Vp,q € An. By the
definition,

N

p+q Di +qi Pi +q;
pEy =y g Pt
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Here, let g(z) = zlogx for a scalar z (0 < z < 1). Since g”(z) = 1 > 0, we know that g(z) is convex.
Thus, we get

N
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< Zpilogprﬂhlogfh _ f(p)+ f(q)
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Thus, we obtain

4) Fenchel.

(a) The conjugate of f, is defined as

F20) = supx0 - 100 = (supx" — 09 ) =g (20).
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(b) The conjugate of f is defined as

f1(0) =supab — 1+ 22.

Let h(z,0) = 20 — /1 + 22. As h is strictly concave in z, w has at most one zero for a fixed . We
have

Oh(x,0) _g__ "
or V1t a2

As | m| < 1 for all z € R, consider the three cases:

e |0 > 1, then h(z,0) is monotonic in = since |8}1872’9)| > |0 —1 > 0. Therefore f*(6) is not defined.

e |0] < 1, then the supremum is achieved where the gradient is zero, i.e., z = \/1‘9_7. Therefore we

have f*(8) = —v1 — 62

e |0 = 1. For 6 = 1 the gradient approaches 0 as z goes to infinity, and hence

fr(0) = lim ¢ —+1+22=0.

r—

Similarly, we have f*(—1) = 0.
To summerize, we have f*(§) = —v/1 — 62,0 € [0, 1].

5) Hoeffding. Often Hoeffding’s Inequality is stated in a different way. Make sure to use Hoeffding to
prove this version.

Let X4,...,X,, be m independent random variables sampled from the same distribution D, where D has
support on [—1, 1], and the mean of D is . Then for some «, 8,y > 0 we have the following statement: with
probability at least 1 — ¢

log(8/6)

ym

;;Xi_,u <

When you solve this problem, make sure to get the best values of «, 3, !

Since E[X;] = p, X; € [-1, 1], we know that E[X; —pu] =0, X; —p € [-1—p, 1 — p]. Thus, by the Hoeffding’s
Inequality, we get

ZX n>— =Pr() (Xi—p) > 1)
i=1
2t? t2
< eXP(—m) = eXP(—%)

i=1
Similarly, we obtain

t2

ZX p< —*) < exp(—5—) (1)

Therefore, when exp(—%) = g, we get ‘%221 X; —,u| < L with probability at least 1 — §. From

/ 2
t= 2mlog5

exp(—%) = g, we represent ¢ with ¢.
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Therefore, we finially get

6) Bayes classifier.

(a) Recall that n(z) = Pr[Y = 1|X = z]. Show that
_ 1
1+exp(=54)

n(z)

**Hint.** Use Bayes’ rule.

Using Bayes’ rule we have

Pr[X =z|Y = 1] Pr[Y = 1] @)
Pr[X = x] '

Denote the pdf of the first Gaussian by f; and the second Gaussian by fo. Then, Pr[Y = 1] = 1/2,

PriX = zlY = 1] = fi(z), and Pr[X = 2] = fi(z)/2 + f2(x)/2. Hence, n(z) = fi(2)/(fi(z) + f2(2)).
Substituting in for the Gaussian pdf,

n(r) =

n(r) =

e )

(b) Compute an analytical expression for hayes (*i.€.*, substitute () and simplify the resulting expression).

We have
1 ———s > 1/2,
hBayes(z) = ) (6)
—1 else.
Simplifying the inequality, we find that it reduces to & > 0. So, hpayes(x) = sgn(z).
(c) Compute the Bayes error L(hgayes). You can leave your answer in terms of the Gaussian cdf ®.

We have

L(hBayeS) Pr[hBayeS(x) #Y]
rlsgn(z) # Y]
[t>0and Y = —1]+Prjlzr <0and Y = 1]

P
P

= 2Pr[z < 0|Y =1]Pr[y = 1]
P
o
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(d) On which point(s) € R is hpayes most likely to make a mistake? Why?

hBayes is most likely to make a mistake on the point x = 0. This is because n(0) = 1/2, which means
the value of Y is essentially a coin flip. Hence, hpayes Will make a mistake with probability 1/2 (which
is the maximum probability for a mistake in binary classification).



