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1) Norm. We will prove a generic statement which implies (a)-(d).

Let p > q ≥ 1, and r be a number such that 1
p + 1

r = 1
q . Then, q < p, r and (pq ,

r
q ) is a conjugate norm pair.

Let a ∈ RN such that ai = |xi|q, and let y = (1, . . . , 1) ∈ RN . Now we use Holder’s inequality:

a⊤y =
N∑
i=1

|xi|q ≤ ∥a∥ p
q
∥y∥ r

q
=

(
N∑
i=1

|xi|p
) q

p

n
q
r .

By exponentiating each side with 1/q, we get

∥x∥q ≤ ∥x∥pn
1
r = ∥x∥pn

1
q−

1
p

Also note that

∥x∥pq =

(
N∑
i=1

|xi|q
) p

q

≥
N∑
i=1

|xi|p = ∥x∥pp

which implies ∥x∥q ≥ ∥x∥p. The inequality follows since (
∑

|xi|)α ≥
∑

|xi|α whenever α ≥ 1.

For part e), from the above result, we get

∥x∥∞ ≤ ∥x∥p ≤ N
1
p ∥x∥∞

Thus, when we apply limp→+∞ to the above inequality, we finally obtain

∥x∥∞ ≤ lim
p→+∞

∥x∥p ≤ ∥x∥∞ ⇒ lim
p→+∞

∥x∥p = ∥x∥∞

2) Hölder.

(a) Let p > 1 such that 1
p + 1

q = 1.Consider the following two vectors:

x,y ∈ RN : xi = p
1
q−1

i , yi = p
1
p

i ,

then by Hölder’s Inequality,

∥x∥q∥y∥p ≥ xTy =
∑
i

p
1
p+

1
q−1

i = N.

where ∥x∥q = (
∑

i p
1−q
i )

1
q and ∥y∥p = 1. Therefore,

∑
i

(∑
i

1

pq−1
i

) 1
q

≥ N ⇒
∑
i

1

pq−1
i

≥ Nq.
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Remark. You can also use Jensen’s inequality. Consider the function f(p) = 1
pq and note that

f(
∑N

i=1 pipi) ≤
∑N

i=1 pif(pi).

(b) By Jensen’s Inequality, ∑
i

p2i ≥
∑
i

pi
N

=
1

N
.

Therefore, we have

∑
i

(
1

pi
+ pi

)2

=
∑
i

p2i +
∑
i

2 +
∑
i

1

p2i
≥ 1

N
+ 2N +N3.

Remark. You can use 1(a) to show that
∑

i p
2
i = ∥p∥22 ≥ ∥p∥2

1

N .

3) Convexity.

(a) For the convexity of the given function, we need to show f(p+q
2 ) ≤ f(p)+f(q)

2 for ∀p, q ∈ ∆N . By the
definition,

f(
p+ q

2
) =

N∑
i=1

pi + qi
2

log(
pi + qi

2
)

Here, let g(x) = x log x for a scalar x (0 < x < 1). Since g′′(x) = 1
x > 0, we know that g(x) is convex.

Thus, we get

f(
p+ q

2
) =

N∑
i=1

pi + qi
2

log(
pi + qi

2
)

≤
N∑
i=1

pi log pi + qi log qi
2

=
f(p) + f(q)

2

(b) Since the function g is convex, we know

∇g(x)T (y − x) ≤ g(y)− g(x)

∇g(y)T (x− y) ≤ g(x)− g(y)

Thus, we obtain

(∇g(x)−∇g(y))T (x− y) = ∇g(x)T (x− y)−∇g(y)T (x− y)

≥ g(x)− g(y)− (g(x)− g(y)) = 0

4) Fenchel.

(a) The conjugate of fα is defined as

f∗
α(θ) = sup

x
xT θ − fα(x) = α

(
sup
x

xT θ

α
− f(x)

)
= αg

(
1

α
θ

)
.
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(b) The conjugate of f is defined as

f∗(θ) = sup
x

xθ −
√

1 + x2.

Let h(x, θ) = xθ−
√
1 + x2. As h is strictly concave in x, ∂h(x,θ)

∂x has at most one zero for a fixed θ. We
have

∂h(x, θ)

∂x
= θ − x√

1 + x2
.

As | x√
1+x2

| < 1 for all x ∈ R, consider the three cases:

• |θ| > 1, then h(x, θ) is monotonic in x since |∂h(x,θ)∂x | > |θ| − 1 > 0. Therefore f∗(θ) is not defined.

• |θ| < 1, then the supremum is achieved where the gradient is zero, i.e., x = θ√
1−θ2

. Therefore we

have f∗(θ) = −
√
1− θ2.

• |θ| = 1. For θ = 1 the gradient approaches 0 as x goes to infinity, and hence

f∗(θ) = lim
x→∞

x−
√
1 + x2 = 0.

Similarly, we have f∗(−1) = 0.

To summerize, we have f∗(θ) = −
√
1− θ2, θ ∈ [0, 1].

5) Hoeffding. Often Hoeffding’s Inequality is stated in a different way. Make sure to use Hoeffding to
prove this version.

Let X1, . . . , Xm be m independent random variables sampled from the same distribution D, where D has
support on [−1, 1], and the mean of D is µ. Then for some α, β, γ > 0 we have the following statement: with
probability at least 1− δ

∣∣∣∣∣ 1m
m∑
i=1

Xi − µ

∣∣∣∣∣ ≤ α

√
log(β/δ)

γm
.

When you solve this problem, make sure to get the best values of α, β, γ!

Since E[Xi] = µ,Xi ∈ [−1, 1], we know that E[Xi−µ] = 0, Xi−µ ∈ [−1−µ, 1−µ]. Thus, by the Hoeffding’s
Inequality, we get

Pr(
1

m

m∑
i=1

Xi − µ >
t

m
) = Pr(

m∑
i=1

(Xi − µ) > t)

≤ exp(− 2t2∑m
i=1(ai − bi)2

) = exp(− t2

2m
)

Similarly, we obtain

Pr(
1

m

m∑
i=1

Xi − µ < − t

m
) ≤ exp(− t2

2m
) (1)

Therefore, when exp(− t2

2m ) = δ
2 , we get

∣∣ 1
m

∑m
i=1 Xi − µ

∣∣ ≤ t
m with probability at least 1 − δ. From

exp(− t2

2m ) = δ
2 , we represent t with δ.

t =

√
2m log

2

δ
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Therefore, we finially get

t

m
=

√
2

m
log

2

δ
= α

√
log(β/δ)

γm

→ α = 2, β = 2, γ = 2

6) Bayes classifier.

(a) Recall that η(x) = Pr[Y = 1|X = x]. Show that

η(x) =
1

1 + exp(−xµ
σ2 )

.

**Hint.** Use Bayes’ rule.

Using Bayes’ rule we have

η(x) =
Pr[X = x|Y = 1]Pr[Y = 1]

Pr[X = x]
. (2)

Denote the pdf of the first Gaussian by f1 and the second Gaussian by f2. Then, Pr[Y = 1] = 1/2,
Pr[X = x|Y = 1] = f1(x), and Pr[X = x] = f1(x)/2 + f2(x)/2. Hence, η(x) = f1(x)/(f1(x) + f2(x)).
Substituting in for the Gaussian pdf,

η(x) =

exp

(
− 1

2

(
x−µ

2

σ

)2)
exp

(
− 1

2

(
x−µ

2

σ

)2)
+ exp

(
− 1

2

(
x+µ

2

σ

)2) (3)

=
1

1 +
exp

(
− 1

2

(
x+

µ
2

σ

)2)
exp

(
− 1

2

(
x−µ

2
σ

)2)
(4)

=
1

1 + exp
(−xµ

σ2

) . (5)

(b) Compute an analytical expression for hBayes (*i.e.*, substitute η(x) and simplify the resulting expression).

We have

hBayes(x) =

{
1 1

1+exp(−xµ

σ2 )
≥ 1/2,

−1 else.
(6)

Simplifying the inequality, we find that it reduces to x ≥ 0. So, hBayes(x) = sgn(x).

(c) Compute the Bayes error L(hBayes). You can leave your answer in terms of the Gaussian cdf Φ.

We have

L(hBayes) = Pr[hBayes(x) ̸= Y ]

= Pr[sgn(x) ̸= Y ]

= Pr[x > 0 and Y = −1] + Pr[x < 0 and Y = 1]

= 2Pr[x < 0 | Y = 1]Pr[Y = 1]

= Pr[x < 0 | Y = 1]

= Φ
(
− µ

2σ

)
.
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(d) On which point(s) x ∈ R is hBayes most likely to make a mistake? Why?

hBayes is most likely to make a mistake on the point x = 0. This is because η(0) = 1/2, which means
the value of Y is essentially a coin flip. Hence, hBayes will make a mistake with probability 1/2 (which
is the maximum probability for a mistake in binary classification).
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