CS7545, Spring 2024: Machine Learning Theory - Solutions \#1

Jacob Abernethy, Tyler Labonte, Guanghui Wang, Yeojoon Youn

Due: Friday, February 2 at 11:59 p.m.

1) Norm. We will prove a generic statement which implies (a)-(d).

Let $p>q \geq 1$, and r be a number such that $\frac{1}{p}+\frac{1}{r}=\frac{1}{q}$. Then, $q<p, r$ and $\left(\frac{p}{q}, \frac{r}{q}\right)$ is a conjugate norm pair. Let $\mathbf{a} \in \mathbb{R}^{N}$ such that $a_{i}=\left|x_{i}\right|^{q}$, and let $\mathbf{y}=(1, \ldots, 1) \in \mathbb{R}^{N}$. Now we use Holder's inequality:

$$
\mathbf{a}^{\top} \mathbf{y}=\sum_{i=1}^{N}\left|x_{i}\right|^{q} \leq\|\mathbf{a}\|_{\frac{p}{q}}\|\mathbf{y}\|_{\frac{r}{q}}=\left(\sum_{i=1}^{N}\left|x_{i}\right|^{p}\right)^{\frac{q}{p}} n^{\frac{q}{r}}
$$

By exponentiating each side with $1 / q$, we get

$$
\|\mathbf{x}\|_{q} \leq\|\mathbf{x}\|_{p} n^{\frac{1}{r}}=\|\mathbf{x}\|_{p} n^{\frac{1}{q}-\frac{1}{p}}
$$

Also note that

$$
\|\mathbf{x}\|_{q}^{p}=\left(\sum_{i=1}^{N}\left|x_{i}\right|^{q}\right)^{\frac{p}{q}} \geq \sum_{i=1}^{N}\left|x_{i}\right|^{p}=\|\mathbf{x}\|_{p}^{p}
$$

which implies $\|\mathbf{x}\|_{q} \geq\|\mathbf{x}\|_{p}$. The inequality follows since $\left(\sum\left|x_{i}\right|\right)^{\alpha} \geq \sum\left|x_{i}\right|^{\alpha}$ whenever $\alpha \geq 1$.
For part e), from the above result, we get

$$
\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{p} \leq N^{\frac{1}{p}}\|\mathbf{x}\|_{\infty}
$$

Thus, when we apply $\lim _{p \rightarrow+\infty}$ to the above inequality, we finally obtain

$$
\|\mathbf{x}\|_{\infty} \leq \lim _{p \rightarrow+\infty}\|\mathbf{x}\|_{p} \leq\|\mathbf{x}\|_{\infty} \Rightarrow \lim _{p \rightarrow+\infty}\|\mathbf{x}\|_{p}=\|\mathbf{x}\|_{\infty}
$$

2) Hölder.
(a) Let $p>1$ such that $\frac{1}{p}+\frac{1}{q}=1$. Consider the following two vectors:

$$
\mathbf{x}, \mathbf{y} \in \mathbb{R}^{N}: x_{i}=p_{i}^{\frac{1}{q}-1}, y_{i}=p_{i}^{\frac{1}{p}}
$$

then by Hölder's Inequality,

$$
\|\mathbf{x}\|_{q}\|\mathbf{y}\|_{p} \geq \mathbf{x}^{T} \mathbf{y}=\sum_{i} p_{i}^{\frac{1}{p}+\frac{1}{q}-1}=N
$$

where $\|\mathbf{x}\|_{q}=\left(\sum_{i} p_{i}^{1-q}\right)^{\frac{1}{q}}$ and $\|\mathbf{y}\|_{p}=1$. Therefore,

$$
\sum_{i}\left(\sum_{i} \frac{1}{p_{i}^{q-1}}\right)^{\frac{1}{q}} \geq N \Rightarrow \sum_{i} \frac{1}{p_{i}^{q-1}} \geq N^{q}
$$

Remark. You can also use Jensen's inequality. Consider the function $f(p)=\frac{1}{p^{q}}$ and note that $f\left(\sum_{i=1}^{N} p_{i} p_{i}\right) \leq \sum_{i=1}^{N} p_{i} f\left(p_{i}\right)$.
(b) By Jensen's Inequality,

$$
\sum_{i} p_{i}^{2} \geq \sum_{i} \frac{p_{i}}{N}=\frac{1}{N}
$$

Therefore, we have

$$
\sum_{i}\left(\frac{1}{p_{i}}+p_{i}\right)^{2}=\sum_{i} p_{i}^{2}+\sum_{i} 2+\sum_{i} \frac{1}{p_{i}^{2}} \geq \frac{1}{N}+2 N+N^{3}
$$

Remark. You can use 1(a) to show that $\sum_{i} p_{i}^{2}=\|\mathbf{p}\|_{2}^{2} \geq \frac{\|\mathbf{p}\|_{1}^{2}}{N}$.

3) Convexity.

(a) For the convexity of the given function, we need to show $f\left(\frac{p+q}{2}\right) \leq \frac{f(p)+f(q)}{2}$ for $\forall p, q \in \Delta_{N}$. By the definition,

$$
f\left(\frac{p+q}{2}\right)=\sum_{i=1}^{N} \frac{p_{i}+q_{i}}{2} \log \left(\frac{p_{i}+q_{i}}{2}\right)
$$

Here, let $g(x)=x \log x$ for a scalar $x(0<x<1)$. Since $g^{\prime \prime}(x)=\frac{1}{x}>0$, we know that $g(x)$ is convex. Thus, we get

$$
\begin{aligned}
f\left(\frac{p+q}{2}\right) & =\sum_{i=1}^{N} \frac{p_{i}+q_{i}}{2} \log \left(\frac{p_{i}+q_{i}}{2}\right) \\
& \leq \sum_{i=1}^{N} \frac{p_{i} \log p_{i}+q_{i} \log q_{i}}{2}=\frac{f(p)+f(q)}{2}
\end{aligned}
$$

(b) Since the function g is convex, we know

$$
\begin{aligned}
& \nabla g(x)^{T}(y-x) \leq g(y)-g(x) \\
& \nabla g(y)^{T}(x-y) \leq g(x)-g(y)
\end{aligned}
$$

Thus, we obtain

$$
\begin{aligned}
(\nabla g(x)-\nabla g(y))^{T}(x-y) & =\nabla g(x)^{T}(x-y)-\nabla g(y)^{T}(x-y) \\
& \geq g(x)-g(y)-(g(x)-g(y))=0
\end{aligned}
$$

4) Fenchel.

(a) The conjugate of f_{α} is defined as

$$
f_{\alpha}^{*}(\theta)=\sup _{\mathbf{x}} \mathbf{x}^{T} \theta-f_{\alpha}(\mathbf{x})=\alpha\left(\sup _{\mathbf{x}} \mathbf{x}^{T} \frac{\theta}{\alpha}-f(\mathbf{x})\right)=\alpha g\left(\frac{1}{\alpha} \theta\right)
$$

(b) The conjugate of f is defined as

$$
f^{*}(\theta)=\sup _{x} x \theta-\sqrt{1+x^{2}} .
$$

Let $h(x, \theta)=x \theta-\sqrt{1+x^{2}}$. As h is strictly concave in $x, \frac{\partial h(x, \theta)}{\partial x}$ has at most one zero for a fixed θ. We have

$$
\frac{\partial h(x, \theta)}{\partial x}=\theta-\frac{x}{\sqrt{1+x^{2}}}
$$

As $\left|\frac{x}{\sqrt{1+x^{2}}}\right|<1$ for all $x \in \mathbb{R}$, consider the three cases:

- $|\theta|>1$, then $h(x, \theta)$ is monotonic in x since $\left|\frac{\partial h(x, \theta)}{\partial x}\right|>|\theta|-1>0$. Therefore $f^{*}(\theta)$ is not defined.
- $|\theta|<1$, then the supremum is achieved where the gradient is zero, i.e., $x=\frac{\theta}{\sqrt{1-\theta^{2}}}$. Therefore we have $f^{*}(\theta)=-\sqrt{1-\theta^{2}}$.
- $|\theta|=1$. For $\theta=1$ the gradient approaches 0 as x goes to infinity, and hence

$$
f^{*}(\theta)=\lim _{x \rightarrow \infty} x-\sqrt{1+x^{2}}=0
$$

Similarly, we have $f^{*}(-1)=0$.
To summerize, we have $f^{*}(\theta)=-\sqrt{1-\theta^{2}}, \theta \in[0,1]$.
5) Hoeffding. Often Hoeffding's Inequality is stated in a different way. Make sure to use Hoeffding to prove this version.

Let X_{1}, \ldots, X_{m} be m independent random variables sampled from the same distribution D, where D has support on $[-1,1]$, and the mean of D is μ. Then for some $\alpha, \beta, \gamma>0$ we have the following statement: with probability at least $1-\delta$

$$
\left|\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mu\right| \leq \alpha \sqrt{\frac{\log (\beta / \delta)}{\gamma m}} .
$$

When you solve this problem, make sure to get the best values of α, β, γ !
Since $\mathbb{E}\left[X_{i}\right]=\mu, X_{i} \in[-1,1]$, we know that $\mathbb{E}\left[X_{i}-\mu\right]=0, X_{i}-\mu \in[-1-\mu, 1-\mu]$. Thus, by the Hoeffding's Inequality, we get

$$
\begin{aligned}
\operatorname{Pr}\left(\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mu>\frac{t}{m}\right) & =\operatorname{Pr}\left(\sum_{i=1}^{m}\left(X_{i}-\mu\right)>t\right) \\
& \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{m}\left(a_{i}-b_{i}\right)^{2}}\right)=\exp \left(-\frac{t^{2}}{2 m}\right)
\end{aligned}
$$

Similarly, we obtain

$$
\begin{equation*}
\operatorname{Pr}\left(\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mu<-\frac{t}{m}\right) \leq \exp \left(-\frac{t^{2}}{2 m}\right) \tag{1}
\end{equation*}
$$

Therefore, when $\exp \left(-\frac{t^{2}}{2 m}\right)=\frac{\delta}{2}$, we get $\left|\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mu\right| \leq \frac{t}{m}$ with probability at least $1-\delta$. From $\exp \left(-\frac{t^{2}}{2 m}\right)=\frac{\delta}{2}$, we represent t with δ.

$$
t=\sqrt{2 m \log \frac{2}{\delta}}
$$

Therefore, we finially get

$$
\begin{aligned}
& \frac{t}{m}=\sqrt{\frac{2}{m} \log \frac{2}{\delta}}=\alpha \sqrt{\frac{\log (\beta / \delta)}{\gamma m}} \\
& \rightarrow \alpha=2, \beta=2, \gamma=2
\end{aligned}
$$

6) Bayes classifier.
(a) Recall that $\eta(x)=\operatorname{Pr}[Y=1 \mid X=x]$. Show that

$$
\eta(x)=\frac{1}{1+\exp \left(\frac{-x \mu}{\sigma^{2}}\right)}
$$

Hint. Use Bayes' rule.
Using Bayes' rule we have

$$
\begin{equation*}
\eta(x)=\frac{\operatorname{Pr}[X=x \mid Y=1] \operatorname{Pr}[Y=1]}{\operatorname{Pr}[X=x]} . \tag{2}
\end{equation*}
$$

Denote the pdf of the first Gaussian by f_{1} and the second Gaussian by f_{2}. Then, $\operatorname{Pr}[Y=1]=1 / 2$, $\operatorname{Pr}[X=x \mid Y=1]=f_{1}(x)$, and $\operatorname{Pr}[X=x]=f_{1}(x) / 2+f_{2}(x) / 2$. Hence, $\eta(x)=f_{1}(x) /\left(f_{1}(x)+f_{2}(x)\right)$. Substituting in for the Gaussian pdf,

$$
\begin{align*}
\eta(x) & =\frac{\exp \left(-\frac{1}{2}\left(\frac{x-\frac{\mu}{2}}{\sigma}\right)^{2}\right)}{\exp \left(-\frac{1}{2}\left(\frac{x-\frac{\mu}{2}}{\sigma}\right)^{2}\right)+\exp \left(-\frac{1}{2}\left(\frac{x+\frac{\mu}{2}}{\sigma}\right)^{2}\right)} \tag{3}\\
& =\frac{1}{1+\frac{\exp \left(-\frac{1}{2}\left(\frac{x+\frac{\mu}{2}}{\sigma}\right)^{2}\right)}{\exp \left(-\frac{1}{2}\left(\frac{x-\frac{\mu}{2}}{\sigma}\right)^{2}\right)}} \tag{4}\\
& =\frac{1}{1+\exp \left(\frac{-x \mu}{\sigma^{2}}\right)} . \tag{5}
\end{align*}
$$

(b) Compute an analytical expression for $h_{\text {Bayes }}$ (${ }^{*}$ i.e. ${ }^{*}$, substitute $\eta(x)$ and simplify the resulting expression). We have

$$
h_{\text {Bayes }}(x)= \begin{cases}1 & \frac{1}{1+\exp \left(\frac{-x \mu}{\sigma^{2}}\right)} \geq 1 / 2 \tag{6}\\ -1 & \text { else }\end{cases}
$$

Simplifying the inequality, we find that it reduces to $x \geq 0$. So, $h_{\text {Bayes }}(x)=\operatorname{sgn}(x)$.
(c) Compute the Bayes error $L\left(h_{\text {Bayes }}\right)$. You can leave your answer in terms of the Gaussian cdf Φ.

We have

$$
\begin{aligned}
L\left(h_{\text {Bayes }}\right) & =\operatorname{Pr}\left[h_{\text {Bayes }}(x) \neq Y\right] \\
& =\operatorname{Pr}[\operatorname{sgn}(x) \neq Y] \\
& =\operatorname{Pr}[x>0 \text { and } Y=-1]+\operatorname{Pr}[x<0 \text { and } Y=1] \\
& =2 \operatorname{Pr}[x<0 \mid Y=1] \operatorname{Pr}[Y=1] \\
& =\operatorname{Pr}[x<0 \mid Y=1] \\
& =\Phi\left(-\frac{\mu}{2 \sigma}\right) .
\end{aligned}
$$

(d) On which point(s) $x \in \mathbb{R}$ is $h_{\text {Bayes }}$ most likely to make a mistake? Why?
$h_{\text {Bayes }}$ is most likely to make a mistake on the point $x=0$. This is because $\eta(0)=1 / 2$, which means the value of Y is essentially a coin flip. Hence, $h_{\text {Bayes }}$ will make a mistake with probability $1 / 2$ (which is the maximum probability for a mistake in binary classification).

