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26.1 Variational inference

Inference We are given a hidden state θ, which yields an observation x. There is a prior p(θ) coming
from a distribution of possible states, as well as a data likelihood probability p(X|θ). These yield a joint
distribution p(θ, x) = p(θ) · p(x|θ). We may have that x has entries x1, . . . , xn which are sampled iid given
θ, and hence when conditioned on θ, x1, . . . , xn are independent. However, they may not be marginally
independent, since it is possible that

p(x1, . . . , xn) =

∫
θ

p(x1, . . . , xn, θ)dθ =

∫
θ

p(θ) ·
n∏
i=1

p(xi|θ) dθ 6=
n∏
i=1

p(xi).

The posterior Recall Bayes’ rule

p(θ|x) =
p(θ) · p(x|θ)

p(x)
.

In our notation, we have

p(θ|x) =
p(θ) · p(x|θ)∫

θ′
p(θ′) · p(x|θ′)dθ′

.

Unfortunately, this expression may be arbitrary (i.e., it has no closed form) and can be expensive to compute.

What to do? (1) The gold standard is sampling: for instance, Gibbs sampling, Langevin dynamics, or
(stochastic gradient) Markov chain Monte Carlo.

(2) With variational inference, we try to find the best approximate posterior p(θ|x) from a “nice” class.
Here are some possibilities:

1. VB (variational Bayes). Take
q∗ = arg min

q∈Q
KL(q||p(·|x)).

where the KL-divergence is KL(q||p) =
∫
θ
q(θ) log q(θ)

p(θ)dθ. The KL-divergence is convex in its first argument,

but in practice the set Q may be nonconvex. Note that

KL(q||p) ≥ 0

KL(q||p) = 0⇔ q = p.

2. EP (expectation propagation). With KL as above, take

q∗ = arg min
q∈Q

KL(p(·|x)||q).

3. Belief propagation (sum-product algorithm). Here we minimize the Bethe free energy (using the approx-
imating graph.)

26-1



Lecture 26: Variational inference 26-2

Definition 26.1 The evidence lower bound, or ELBO, is given by

ELBO(q) =

∫
θ

q(θ) log
p(θ, x)

q(θ)
dθ ≤ log p(x).

Hence we have that

KL(q||p(·|x)) =

∫
θ

q(θ) log
p(θ, x)

q(θ)
dθ

=

∫
θ

q(θ) log
q(θ) · p(x)

p(θ, x)
dθ

= −ELBO(q) + log p(x) ≥ 0.

26.2 Exponential family distributions

Definition 26.2 A probability distribution q(θ) is in the exponential family if q is of the form

q(θ) = exp(T (θ)>η −A(η))

for some sufficient statistics T (θ) ∈ Rm and natural parameter η ∈ Rm, where

A(η) = log

∫
θ

exp(T (θ)>η −A(η))dθ

is the log-partition function.

Examples of such distributions are the Bernoulli, Poisson, geometric, exponential, Gaussian, graphical
models, etc. However, uniform distributions (for instance) are not in the exponential family.

Properties of exponential distributions

1. We have that
∇A(η) = Eqη[T (x)]

since

∇A(η) =

∫
θ
∇e〈T (θ),η〉dθ∫
θ
e〈T (θ),η〉dθ

=

∫
θ
T (θ)e〈T (θ),η〉dθ∫
θ
e〈T (θ),η〉dθ

= Eqη[T (x)]

2. We have that

∇2A(η) = covqη (T (x)) = Eqη[(T (θ)−∇A(η))(T (θ)−∇A(η))>] ≥ 0,

so A is convex.

3. ∇mA(η) = cov(m)qη .

4. KL(qη||qδ) = DA(δ, η) = A(δ)−A(η)− 〈∇A(η), δ − η〉.

5. A∗(µ) = −A(qη(µ)), where η(µ) is the unique parameter satisfying the moment-matching condition
Eqη(µ)[T (θ)] = µ.

6. The exponential family distribution is the maximum entropy distribution with moment constraint

qη(µ) ← arg max
q
H(q) s.t. Eq[T (θ)] = µ

For VB, we usually choose

Q = {exp. family qη(θ) = exp(〈T (θ), η〉 −A(η)}.
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Mean-field VB When θ = (θ1, . . . , θk), choose the approximating distribution to be independent; that is,
q(θ) = q1(θ1), . . . , qk(θk). In practice, we find the optimality condition

for i = 1, . . . , k :
∂

∂qi
ELBO(q) = 0

and solve by iteratively setting qi such that ∂
∂qi
ELBO(q) = 0.

Streaming/online setting We can also approach this problem in an online setting, where we observe
x1, . . . , xn in a stream. There are two main approaches. First, treat ELBO as a sum of n terms, and use
stochastic gradient descent (see Hoffman, Blei et al. 2013.) Second is the filtering method. Iteratively, use
the approximate posterior qn−1 as the new prior pn−1, then approximate again to get a new posterior qn.


