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24.1 Lower bound on the generalization error

So far, we have shown that if a class H with VCdim = d, then ERM guarantees with probability at least
1− δ, the following upper bound,

R(ĥS)−R(h∗) ≤ c
√
d log(h)

m
+

√
log(2/δ)

2m
, (24.1)

for all distribution D ∼ (x, y), S ∼ Dm.
A lower bound can be determined by finding a ‘bad’ distribution for any learning algorithm. Since, the

algorithm is arbitrary, it is difficult to specify that particular distribution. However, using the probabilistic
method proof technique, it is possible to prove that there exists a distribution such that the generalization
error is at least some factor O(

√
d/m) with a constant probability. In particular, we have the following

Theorem.

Theorem 24.1 Let H be a hypothesis set with VCdim = d > 1. Then, for any learning algorithm, there
exists a distribution D such that:

PS∼Dm
(
R(ĥS)−R(h∗) >

√
d

320m

)
≥ 1/64. (24.2)

Here, ĥS is any estimator that outputs ĥ for S. The Theorem also states that for any learning algorithm,
the sample complexity verifies,

m ≥ d

320ε2
. (24.3)

The following Lemma is needed for the lower bound proof.

Lemma 24.2 Let α be uniformly distributed in {α−, α+}, where α+ = 1/2 + ε/2 and α− = 1/2− ε/2. Let
Dα a distribution such that P(y = 1) = α and P(y = 0) = 1 − α. Let S ∼ Dm

α and let h be any estimator,
h(S) = α+ or h(S) = α− (h guesses whether it is the case α+ or α−). Then,

Eα (PS∼Dm(h(S) 6= α)) ≥ 1

4

(
1−

√
exp

(
− mε2

1− ε2

))
:= φ(m, ε). (24.4)

Takeaway: Ifm < O
(

1
ε2

)
, then there is a constant probability that h(S) is wrong (in expected value). This

lemma is like the ‘opposite’ of Hoeffding’s inequality (ifm ≥ 1/ε2 log(1/δ, then P(threshold estimator(S) = α) ≥
1− δ).

The Sketch proof of Theorem 24.1 is the following.
Proof: (Sketch) Let S ⊆ X be a shattered set, with xi ∼ Unif(S). Let σ1, . . . , σd be random variables,

uniform in {−1, 1}. Let Dσ a distribution such that P(y = 1) = 1/2 + ε/2σi and P(y = 0) = 1/2− ε/2σi.
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If Eσ(R(ĥS) − R(h∗)) > ε, then, via probabilistic method, there exists a distribution Dσ such that

R(ĥS)−R(h∗) > ε. Then, using that Si ≈ m
d (we see each sample uniformly), we have,

Eσ
(
R(ĥS)−R(h∗)

)
= Eσ

(
1

d

d∑
i=1

I(hSi(xi) 6= yi)

)
= ε

1

d
Eσ

(
d∑
i=1

P
Si∼Dn/dσi

(hSi = σi)

)
= εφ(m/d, ε)

If we pick ε =
√

d
m , the last term is constant.

24.2 Margin theory sketch

In this section an upper bound on the Empirical Rademacher complexity of a class, which is comprised of
linear classifiers is found.
A linear classifier is defined as:

hw(~x) = sign(~w · ~x)

where ~w ∈ RN and ~x ⊆ RN . Note that the bias is embedded in ~x. A class of linear classifiers is shown as:

Hlin = {hw : ~w ∈ RN}

We know that the VC-dim (Hlin) is equal to N + 1, and N > m; therefore,

R(ĥ)−R(h∗) ≤
√
N logm

m

where
√

N logm
m ≥ 1; therefore this bound is not useful.

To find a tighter lower bound, consider the following class of linear classifiers with bounded norm:

HΛ := {hw(~x) = ~w · ~x : ||~w||2 ≤ Λ}

Given a sample S = {(xi, yi) : i = 1, ...,m} and ~w ∈ RN , margin of the linear classifier is defined as:

ρ(S) = min
i=1,...,m

yi(~w · xi)
||w||

The key idea is that a classifier with a larger margin works better, and has a better generalization. For
example, in the following figure the solid line has a larger margin; thus, it is better.
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Next, Let S = {(xi, yi) : i = 1, ...,m}, and ||xi|| ≤ r, where r is some constant.
Claim: Empirical Rademacher complexity of HΛ is bounded as:

R̂S ≤
√
r2Λ2

m

Proof:

R̂S = E
σ1,...,σm

[
1

m
sup

hw∈HΛ

m∑
i=1

σihw(xi)

]
=

1

m
E

σ1,...,σm

[
sup

w:||w||≤Λ

(
m∑
i=1

σixi

)
· w

]

where σ1, ..., σm are Rademacher random variables. Using the Cauchy-Schwarz inequality:

≤ 1

m
E

σ1,...,σm

[
sup

w:||w||≤Λ

||w||2

∣∣∣∣∣
∣∣∣∣∣
m∑
i=1

σixi

∣∣∣∣∣
∣∣∣∣∣
2

]

where sup
w:||w||≤Λ

||w||2 ≤ Λ. Using the Jensen’s inequality:

≤

√√√√√ Λ

m
E

σ1,...,σm

∣∣∣∣∣
∣∣∣∣∣
m∑
i=1

σixi

∣∣∣∣∣
∣∣∣∣∣
2
 =

Λ

m

√√√√√ E
σ1,...,σm

∑
i,j

σiσjxixj

 =
Λ

m

√√√√ m∑
i=1

||xi||2 ≤
Λ

m

√
mr2 =

√
r2Λ2

m

Note that the bound can be tuned by increasing r or equivalently decreasing Λ.
To somehow include the sign function we use a loss function, and find an upper bound on R̂S (` ·HΛ).
Consider the following function:

φ(z) =


1 z ≤ 0

0 z ≥ ρ
1− z

ρ 0 ≤ z ≤ ρ

which looks like:

In fact, this function makes us to pay for low confidence. If we use `(y, ŷ) = φρ(yŷ), where y ∈ {−1, 1},
it can be proven that:

R̂S (` ·HΛ) ≤ 1

ρ
R̂S (HΛ) ≤ 1

ρ

√
r2Λ2

m

For more information and the proof look at the Lemma 4.2 Talagrand’s Lemma in the book.


