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20.1 Recap Empirical Risk Minimization

Basic concept:

• Some Input space X

• Label space Y, prediction space Y ′

• Hypothesis class H, h ∈ H : X → Y ′

• Loss function ` : Y ′ × Y → R.

• Distribution D ∈ ∆(X × Y)

• Risk of h ∈ H: R(h) = E(x,y)∼D[l(h(x), y)]

• Empirical risk for samples {(x1, y1), . . . , (xm, ym)} ⊆ X × Y: R̂m(h) = 1
m

∑m
i=1 `(h(xi), yi)

• Empirical Risk Minimization (ERM): select ĥ = arg minh∈H R̂m(h).

Last time, we have the following simple bound:

R(ĥ)− min
h∗∈H

R(h∗) ≤ 2 sup |R̂m(h)−R(h)|

Proof:

R(ĥ)−R(h∗) = R(ĥ)− R̂m(h∗) = R(ĥ)− R̂m(ĥ) + R̂m(ĥ)− R̂m(h∗) + R̂m(h∗)−R(h∗)

≤ |R(ĥ)− R̂m(ĥ)|+ |R̂m(h∗)−R(h∗)|

If we can show that suph∈H |R̂m(h)−R(h)| has an uniform bound, then we have a bound on the estimation
error. For finite H, recall that for fixed h ∈ H, we have

Pr(|E[`(h(x), y)]− 1

m

m∑
i=1

`(h(xi), yi)| > t) ≤ 2 exp(−2mt2).

Then, by union bound, we have

Pr(∃h ∈ H : |E[`(h(x), y)]− 1

m

m∑
i=1

`(h(xi), yi)| > t) ≤ 2|H| exp(−2mt2).

Thus we bound the empirical risk as following w.p. at least 1− δ, ∀h ∈ H

|R(h)− R̂m(h)| ≤
√

2 log 2/δ + log |H|
2m

.

Note that the infinite H case requires more careful analysis.
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20.2 VC-Dimension

The VC-dimension, named after Vapnik and Chervonenkis, is a parameter that captures learnability for
finite and infinite hypothesis classes.

Definition 20.1 The VC-dimension of a hypothesis class H is given by

VC-dim(H) = max{d : ∃S ⊆ X, |S| = d,H shatters S} (20.1)

Claim 20.2 Let H be a class of binary function, and S = {x1, x2, ..., xm}. We say H shatters S, if
|{(h(x1), ..., h(xm)) : h ∈ H}| = 2m.

Claim 20.3 The VC-dimension of the linear-threshold. functions in Rd is d+ 1.

20.3 Rademacher Complexity

The Rademacher Complexity of a class of functions measures how rich the class is. It does so by measuring
how well the class can fit random noise. In particular, it uses Rademacher random variables.

Definition 20.4 A Rademacher Random Variable takes on values ±1 and is defined by the Rademacher
distribution

σi =

{
1, w.p. 1

2

-1, w.p. 1
2

(20.2)

Definition 20.5 The Empirical Rademacher Complexity of a class G of functions g : X → R with respect
to a sample S = (x1, x2, ..., xm) is

R̂S := Eε1,...,εm [ sup
h∈H

1

m

m∑
i=1

εih(xi)] (20.3)

where ε1, ε2, ..., εm are independent Rademacher random variables.

Definition 20.6 Given a distribution D ∈ ∆(x), the Rademacher Complexity of H w.r.t. D is ES∼D[R̂S(H)].

The following theorem connects the Rademacher Complexity with the uniform deviation bounds.

Theorem 20.7 Let G be a class of functions g : X → [0, 1] and D ∈ ∆(X) be a distribution. Then with
probability at least 1− δ, we have that

sup
g∈G

(E[g]− Êg[g]) ≤ 2Rm(G) +

√
log 1

δ

2m
. (20.4)

where S ∼ Dm, E[g] = Ex∼D[g(x)], and ÊS [g] = 1
m

m∑
i=1

g(xi).


