CS 7545: Machine Learning Theory

Lecture 11: Online Convex Optimization

Lecturer: Jacob Abernethy

Scribes: Chen Liang and Jiannan Cui

Fall 2018

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

11.1 Online Gradient Descent

Generalized Experts Setting The process is shown as the following:

Algorithm 1 Generalized Experts

Let $K \subseteq \mathbb{R}^d$ convex and compact. for t = 1...T do Algorithm selects $x_t \in K$ Nature selects loss convex function $f_t : K \to \mathbb{R}$ end for $\operatorname{Regret}_T := \sum_{t=1}^T f_t(x_t) - \min_{x \in K} \sum_{t=1}^T f_t(x)$

Online Gradient Descent The initialization and update rule are shown as the following

 $x_0 =$ arbitrary point in K

$$x_{t+1} = \operatorname{proj}_K(x_t - \eta \nabla f_t(x_t))$$

Theorem 11.1 Let $\nabla_t = \nabla f_t(x_t)$. Assume $\|\nabla_t\|_2 \leq G$ where G is some constant, and $\|x_0 - x^*\|_2 \leq D$ for any $x^* \in K$ where D is some constant. Then:

 $R_T(GD) \le GD\sqrt{T}$

 $\max_{x \in K} ||x_0 - x|| = D \quad \text{where } D \text{ is the diameter of the set } K$

11.2 More Algorithms of Online Convex Optimization

Follow The Leader Consider the update rule

$$x_{t+1} = \operatorname*{arg\,min}_{x \in K} \sum_{s=1}^{t} f_s(x)$$

Follow The Regularized Leader Consider the update rule

$$x_{t+1} = \operatorname*{arg\,min}_{x \in K} \eta \sum_{s=1}^{t} f_s(x) + R(x)$$

R(x) is some convex regularizer. Follow The Regularized Leader Algorithm is a generalization of Exponential Weight Algorithm.

Online Mirror Descent Consider the update rule

$$x_{t+1} = \underset{x \in K}{\arg\min} \eta < \nabla f_t(x_t), x > +D_R(x, x_t)$$

 $D_R(x, x_t)$ is Bregman Divergence. If $D_R(x, x_t) = \frac{1}{2}||x - x_t||^2$, then Online Mirror Descent is a special case of Online Gradient Descent. Alternatively,

$$y_{t+1} = \nabla R^* (\nabla R(x_t) - \eta \nabla f_t(x_t))$$
$$x_{t+1} = \operatorname*{arg\,min}_{x \in K} D_R(x, y_{t+1})$$

which shows that the gradient of the current x_t regularizer is mapped to dual space and updated, and then mapped back from dual space.

11.3 Example Applications of Online Gradient Descent

Online Linear Regression Consider the process

\mathbf{A}	lgorithm	2	On	line	Linear	R	legression
--------------	----------	----------	----	------	--------	---	------------

for t = 1...T do Algorithm selects $\vec{\theta_t} \in \mathcal{R}^d$ Nature selects $(\vec{x_t}, y_t) \in \mathcal{R}^d \times \mathcal{R}$ $f_t(\vec{\theta_t}) = \frac{1}{2} (\vec{\theta_t} \cdot \vec{x_t} - y_t)^2$ end for

Online Density Estimation Let $\{P_{\vec{\theta}} : \vec{\theta} \in \Theta \subseteq \mathcal{R}^d\}$ where Θ is convex, and $P_{\vec{\theta}}$ represents a exponential family distribution. Then consider the process:

Algorithm 3 Online Density Estimation			
for $t = 1T$ do			
Algorithm selects $\vec{\theta_t} \in \Theta$			
Nature selects $\vec{x_t} \in \mathcal{X}$			
$f_t(ec{ heta_t}) = -log P_{ec{ heta_t}}(ec{x_t})$			
end for			

Note that a family of distributions is said to belong to a vector exponential family if the probability density function (or probability mass function, for discrete distributions) can be written as

$$\begin{split} P_{\vec{\theta}}(\vec{x}) &= exp(\vec{\theta}^{\top}\phi(\vec{x}) - A(\vec{\theta})) \\ \text{where } A(\vec{\theta}) &= \log \int exp(\vec{\theta}^{\top}\phi(\vec{x})) dx \\ \nabla A(\vec{\theta}) &= \mathbb{E}_{\vec{x} \sim P_{\vec{\theta}}}[\phi(\vec{x})] \end{split}$$

 $\vec{\theta}$ are parameters, $\phi(\vec{x})$ can be viewed as feature representations and $A(\vec{\theta})$ can be viewed as a normalizer. For example, if we set $P_{\vec{\theta}}(\vec{x})$ as a standard Gaussian, then $P_{\vec{\theta}_t}(\vec{x}_t) = \frac{exp(-\frac{1}{2}(\vec{\theta_t} - \vec{x}_t)^2)}{z_{\theta}}$ and $f_t(\vec{\theta_t}) = \frac{1}{2}||\vec{\theta_t} - \vec{x_t}||^2$.

Online Portfolio Selection Assume there are N stocks. The prices fluctuate from day to day. Let's define

$$\vec{r_t}(i) = \frac{Price_{(t)}(Stock_i)}{Price_{(t-1)}(Stock_i)}$$

where $Price_{(t)}(Stock_i)$ denotes the price of stock i at day t

 Algorithm 4 Online Portfolio Selection

 for t = 1...T do

 Algorithm distributes wealth according to $\vec{w_t} \in \Delta_N$

 Nature updates price arbitrarily

 $f_t(\vec{w_t}) = -log \sum_{i=1}^N \vec{r_t}(i)\vec{w_t}(i)$

 end for

 Regret_T := $\sum_{t=1}^T -log(\vec{r_t} \cdot \vec{w_t}) - \min_{\vec{w} \in \Delta_N} \sum_{t=1}^T -log(\vec{r_t} \cdot \vec{w}) = \max_{\vec{w} \in \Delta_N} log \frac{\prod_{t=1}^T \vec{w} \cdot \vec{r_t}}{\prod_{t=1}^T \vec{w_t} \cdot \vec{r_t}}$

we have a constant log optimal strategy \vec{w}^* at each time. This is called a constant rebalanced portfolio (CRP). This means we must rebalance our investment after the stocks have grown at non-uniform rates to yield a different balance than \vec{w}^* .

11.4 Convex Optimization to Online Convex Optimization

We want to solve the following convex optimization problem,

$$min_{x\in K} f(x)$$

where f and K is convex. And there is some given no-regret OGD Algorithm: for t = 1, ..., T, the algorithm plays x_t ; nature plays $f_t(x) = f(x)$; output is $\bar{x}_T = \frac{1}{T} \sum_{t=1}^T x_t$. Claim:

$$f(\bar{x}_T) - min_{x \in K} f(x) \le \frac{Regret_T}{T}$$

Proof:

$$f(\bar{x}_T) \le \frac{1}{T} \sum_{t=1}^T f(x_t) = \frac{1}{T} \sum_{t=1}^T f_t(x_t) = \frac{1}{T} \min_{x \in K} \sum_{t=1}^T f_t(x) + \frac{Regret_T}{T}$$
$$= \min_{x \in K} \frac{1}{T} \sum_{t=1}^T f(x) + \frac{Regret_T}{T} = \min_{x \in K} f(x) + \frac{Regret_T}{T}$$

Fact: If function f is smooth, GD achieves $O(\frac{1}{T})$ and AGD (Accelerated Gradient Descent) achieves $O\frac{1}{T^2}$. AGD is equivalent to using two regret-min algorithms on the following game:

$$g(x,y) = f^*(y) - x^T y$$

y-player: optimise FTL; x-player: GD.

11.5 Online to Batch Conversion

Online to batch conversion can reduce learning in "stochastic setting" to OCO. Given data \vec{x} and label y, i.i.d., $(\vec{x}_1, y_1), ..., (\vec{x}_T, y_T) \sim D \in \Delta(\vec{x}, y); \mathcal{H} := \{h_{\vec{\theta}} : \vec{\theta} \in \Theta\}$, where Θ is convex and bounded; loss $\ell(h_{\vec{\theta}}, (\vec{x}, y))$ is convex in $\vec{\theta}$ (e.g. $(\vec{\theta} \cdot \vec{x} - y)^2$). Risk of $\vec{\theta}$ is $\mathcal{L}(\vec{\theta}) =$
$$\begin{split} \mathbb{E}_{(\vec{x},y)\sim D}[\ell(h_{\vec{\theta}},(\vec{x},y))].\\ \text{We want to find } \hat{\vec{\theta}} \text{ from } T \text{ data points, such that } \mathscr{L}(\hat{\vec{\theta}}) - \min_{\vec{\theta}^*\in\Theta} \mathscr{L}(\vec{\theta^*}) \leq \epsilon.\\ \mathbf{Proposal:} \end{split}$$

 $\begin{array}{l} \hline \textbf{Algorithm 5 Online to Batch Conversion} \\ \hline \textbf{Input:} \ (\vec{x}_t, y_t) \sim D \ for \ all \ t = \{1, ..., T\}. \\ \textbf{Output:} \ \vec{\theta} = \frac{1}{T} \sum_{t=1}^{T} \vec{\theta}_t \\ \textbf{for } t = 1 ... T \ \textbf{do} \\ \hline \textbf{Algorithm chooses } \vec{\theta}_t \in \Theta; \\ \hline \textbf{Algorithm observes } (\vec{x}_t, y_t); \\ \hline \textbf{Algorithm experiences loss given by convex loss function } f_t(\vec{\theta}_t) := \ell(h_{\vec{\theta}_t}, (\vec{x}_t, y_t)); \\ \hline \textbf{Update by using OCO } \vec{\theta}_{t+1} = Projection_{\Theta}(\vec{\theta}_t - \eta \nabla f_t(\vec{\theta}_t)); \\ \textbf{end for} \end{array}$

Claim: The online to batch conversion guarantees

$$\mathscr{L}(\hat{\vec{\theta}}) - \mathscr{L}(\vec{\theta^*}) \leq \frac{\mathbb{E}[Regret_T]}{T}$$