
CS 7545: Machine Learning Theory Fall 2018

Lecture 11: Online Convex Optimization
Lecturer: Jacob Abernethy Scribes: Chen Liang and Jiannan Cui

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal pub-
lications.

11.1 Online Gradient Descent

Generalized Experts Setting The process is shown as the following:

Algorithm 1 Generalized Experts

Let K ⊆ Rd convex and compact.
for t = 1...T do

Algorithm selects xt ∈ K
Nature selects loss convex function ft : K → R

end for
RegretT :=

∑T
t=1 ft(xt)−minx∈K

∑T
t=1 ft(x)

Online Gradient Descent The initialization and update rule are shown as the following

x0 = arbitrary point in K

xt+1 = projK(xt − η∇ft(xt))

Theorem 11.1 Let ∇t = ∇ft(xt). Assume ‖∇t‖2 ≤ G where G is some constant, and ‖x0 − x∗‖2 ≤
D for any x∗ ∈ K where D is some constant. Then:

RT (GD) ≤ GD
√
T

max
x∈K
||x0 − x|| = D where D is the diameter of the set K

11.2 More Algorithms of Online Convex Optimization

Follow The Leader Consider the update rule

xt+1 = arg min
x∈K

t∑
s=1

fs(x)

Follow The Regularized Leader Consider the update rule

xt+1 = arg min
x∈K

η

t∑
s=1

fs(x) +R(x)

R(x) is some convex regularizer. Follow The Regularized Leader Algorithm is a generalization of
Exponential Weight Algorithm.

11-1

Lecture 11: Online Convex Optimization 11-2

Online Mirror Descent Consider the update rule

xt+1 = arg min
x∈K

η < ∇ft(xt), x > +DR(x, xt)

DR(x, xt) is Bregman Divergence. If DR(x, xt) = 1
2 ||x − xt||2, then Online Mirror Descent is a

special case of Online Gradient Descent. Alternatively,

yt+1 = ∇R∗(∇R(xt)− η∇ft(xt))

xt+1 = arg min
x∈K

DR(x, yt+1)

which shows that the gradient of the current xt regularizer is mapped to dual space and updated,
and then mapped back from dual space.

11.3 Example Applications of Online Gradient Descent

Online Linear Regression Consider the process

Algorithm 2 Online Linear Regression

for t = 1...T do
Algorithm selects ~θt ∈ Rd
Nature selects (~xt, yt) ∈ Rd ×R
ft(~θt) = 1

2 (~θt · ~xt − yt)2

end for

Online Density Estimation Let {P~θ : ~θ ∈ Θ ⊆ Rd} where Θ is convex, and P~θ represents a
exponential family distribution. Then consider the process:

Algorithm 3 Online Density Estimation

for t = 1...T do
Algorithm selects ~θt ∈ Θ
Nature selects ~xt ∈ X
ft(~θt) = −logP~θt(~xt)

end for

Note that a family of distributions is said to belong to a vector exponential family if the prob-
ability density function (or probability mass function, for discrete distributions) can be written
as

P~θ(~x) = exp(~θ>φ(~x)−A(~θ))

where A(~θ) = log

∫
exp(~θ>φ(~x))dx

∇A(~θ) = E~x∼P~θ [φ(~x)]

~θ are parameters, φ(~x) can be viewed as feature representations and A(~θ) can be viewed as a

normalizer. For example, if we set P~θ(~x) as a standard Gaussian, then P~θt(~xt) =
exp(− 1

2 (~θt− ~xt)2)

zθ

and ft(~θt) = 1
2 ||~θt − ~xt||2.

Lecture 11: Online Convex Optimization 11-3

Online Portfolio Selection Assume there are N stocks. The prices fluctuate from day to day.
Let’s define

~rt(i) =
Price(t)(Stocki)

Price(t−1)(Stocki)

where Price(t)(Stocki) denotes the price of stock i at day t

Algorithm 4 Online Portfolio Selection

for t = 1...T do
Algorithm distributes wealth according to ~wt ∈ ∆N

Nature updates price arbitrarily
ft(~wt) = −log

∑N
i=1 ~rt(i) ~wt(i)

end for
RegretT :=

∑T
t=1−log(~rt · ~wt)−min~w∈∆N

∑T
t=1−log(~rt · ~w) = max~w∈∆N

log
∏T
t=1 ~w·~rt∏T
t=1 ~wt·~rt

we have a constant log optimal strategy ~w∗ at each time. This is called a constant rebalanced
portfolio (CRP). This means we must rebalance our investment after the stocks have grown at
non-uniform rates to yield a different balance than ~w∗.

11.4 Convex Optimization to Online Convex Optimization

We want to solve the following convex optimization problem,

minx∈K f(x)

where f and K is convex. And there is some given no-regret OGD Algorithm: for t = 1, ..., T , the
algorithm plays xt; nature plays ft(x) = f(x); output is x̄T = 1

T

∑T
t=1 xt.

Claim:

f(x̄T)−minx∈Kf(x) ≤ RegretT
T

Proof:

f(x̄T) ≤ 1

T

T∑
t=1

f(xt) =
1

T

T∑
t=1

ft(xt) =
1

T
minx∈K

T∑
t=1

ft(x) +
RegretT

T

= minx∈K
1

T

T∑
t=1

f(x) +
RegretT

T
= minx∈Kf(x) +

RegretT
T

Fact: If function f is smooth, GD achieves O(1
T) and AGD (Accelerated Gradient Descent) achieves

O 1
T 2 . AGD is equivalent to using two regret-min algorithms on the following game:

g(x, y) = f∗(y)− xT y

y-player: optimise FTL; x-player: GD.

11.5 Online to Batch Conversion

Online to batch conversion can reduce learning in ”stochastic setting” to OCO.
Given data ~x and label y, i.i.d., (~x1, y1), ..., (~xT , yT) ∼ D ∈ ∆(~x, y); H := {h~θ : ~θ ∈ Θ}, where

Θ is convex and bounded; loss `(h~θ, (~x, y)) is convex in ~θ (e.g. (~θ · ~x − y)2). Risk of ~θ is L (~θ) =

Lecture 11: Online Convex Optimization 11-4

E(~x,y)∼D[`(h~θ, (~x, y))].

We want to find ~̂θ from T data points, such that L (~̂θ)−min~θ∗∈ΘL (~θ∗) ≤ ε.
Proposal:

Algorithm 5 Online to Batch Conversion

Input: (~xt, yt) ∼ D for all t = {1, ..., T}.
Output: ~̂θ = 1

T

∑T
t=1

~θt

for t = 1...T do
Algorithm chooses ~θt ∈ Θ;
Algorithm observes (~xt, yt);

Algorithm experiences loss given by convex loss function ft(~θt) := `(h~θt , (~xt, yt));

Update by using OCO ~θt+1 = ProjectionΘ(~θt − η∇ft(~θt));
end for

Claim: The online to batch conversion guarantees

L (~̂θ)−L (~θ∗) ≤ E[RegretT]

T

