CS 7545: Machine Learning Theory Fall 2018

Lecture 11: Online Convex Optimization

Lecturer: Jacob Abernethy Scribes: Chen Liang and Jiannan Cui

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal pub-
lications.

11.1 Online Gradient Descent

Generalized Experts Setting The process is shown as the following:

Algorithm 1 Generalized Experts

Let K C R? convex and compact.
for t =1...T do

Algorithm selects z; € K

Nature selects loss convex function f; : K — R
end for

Regrety == 3, fi(z:) — mingex Yy, fo()

Online Gradient Descent The initialization and update rule are shown as the following
ro = arbitrary point in K
L1 = Projg(ze =V fi(ar))

Theorem 11.1 Let V, =V fi(x¢). Assume ||V, < G where G is some constant, and ||xg — x* ||y <
D for any x* € K where D is some constant. Then:

Rr(GD) < GDVT

ma%on —z|| =D where D is the diameter of the set K
fAS

11.2 More Algorithms of Online Convex Optimization

Follow The Leader Consider the update rule
t
sevr = argmin Y £,(0)
zeK s=1

Follow The Regularized Leader Consider the update rule

t
Tip1 = arg minans(x) + R(x)
rzeK

s=1

R(x) is some convex regularizer. Follow The Regularized Leader Algorithm is a generalization of
Exponential Weight Algorithm.
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Online Mirror Descent Consider the update rule

Tip1 = argminng < V fy(z;),z > +Dp(x, x¢)
zeK

Dg(z,x;) is Bregman Divergence. If Dg(z,2;) = %[z — 2|/?, then Online Mirror Descent is a
special case of Online Gradient Descent. Alternatively,

Ye+1 = VR (VR(z¢) — nV fi(21))
Zer1 = argmin Dr(x, yei1)
zeK

which shows that the gradient of the current z; regularizer is mapped to dual space and updated,
and then mapped back from dual space.

11.3 Example Applications of Online Gradient Descent

Online Linear Regression Consider the process

Algorithm 2 Online Linear Regression
fort=1..T do
Algorithm selects 6, € RY
Nature selects (77,9:) € R x R
F100) = $(0; - 7 — ye)?
end for

Online Density Estimation Let {FPj : feoC R?} where © is convex, and Pj represents a
exponential family distribution. Then consider the process:

Algorithm 3 Online Density Estimation
for t =1...T do
Algorithm selects g, €0
Nat_l'lre selects 7; € X
fe(0r) = —logPH; (7)
end for

Note that a family of distributions is said to belong to a vector exponential family if the prob-
ability density function (or probability mass function, for discrete distributions) can be written
as

—

)

where A(f) = log/eacp(é’Tqb(f))da:

Py(@) = exp(0" §(F) — A(

VA(0) = Bz p,[6(2)]
g are parameters, ¢(Z) can be viewed as feature representations and A(G_') can be viewed as a
exp(—3(0r—71)°)

normalizer. For example, if we set Py(Z) as a standard Gaussian, then Py (73) = =

and f,(0;) = 3110 — @3>
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Online Portfolio Selection Assume there are N stocks. The prices fluctuate from day to day.
Let’s define

— /.

(i) = Price)(Stock;)
= Price;_1)(Stock;)

where Priceq)(Stock;) denotes the price of stock i at day t

Algorithm 4 Online Portfolio Selection
for t =1..T do
Algorithm distributes wealth according to w; € Ay
Nature updates price arbitrarily
Fi(16) = —log 2,0 73 (i) (i)
end for T
Regret, := ZtT:1 —log(rt - W) — mingea 5 ZtT:l —log(rt - W) = maxgea log%

we have a constant log optimal strategy w* at each time. This is called a constant rebalanced
portfolio (CRP). This means we must rebalance our investment after the stocks have grown at
non-uniform rates to yield a different balance than w*.
11.4 Convex Optimization to Online Convex Optimization
We want to solve the following convex optimization problem,
mingex f(zx)

where f and K is convex. And there is some given no-regret OGD Algorithm: for t = 1,...,T, the
algorithm plays z;; nature plays fi(z) = f(x); output is Zr = + Z;‘ll Ty

Claim: R .
. egre
f(@r) = mingex f(z) £ =
Proof: . . .
1 1 1 . Regret
f@r) € 23 flo) = =3 filan) = Zmingerc Y filw) + 20
T t=1 T t=1 T t=1 T
T
) 1 Regrety . Regretr
= mmxer Z f(z) + 7 = minger f(z) + -7

t=1

Fact: If function f is smooth, GD achieves O(7) and AGD (Accelerated Gradient Descent) achieves
O%. AGD is equivalent to using two regret-min algorithms on the following game:

g(z,y) = f*(y) —a"y

y-player: optimise FTL; x-player: GD.

11.5 Online to Batch Conversion

Online to batch conversion can reduce learning in ”stochastic setting” to OCO. .
Given data Z and label y, iid., (Z1,91),...,(@1,y7) ~ D € A(Z,y); H := {hy : 0 € O}, where
© is convex and bounded; loss £(hg, (Z,y)) is convex in 0 (e.g. (0-%—y)?). Risk of §is L(0) =
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Bz y)~p[l(hg, (Z,9))]- )
We want to find 8 from T data points, such that f(g) — ming, 7k
Proposal:

Algorithm 5 Online to Batch Conversion
Input: (Zy,y:) ~ D for all t={1,...,T}.
Output: § = * 23:1 6,

for t=1..T do

Algorithm chooses 9_;5 € O
Algorithm observes (%, y:);

Algorithm experiences loss given by convex loss function ft(é;) = E(h@, (Ze,yt))s

Update by using OCO 0:+1 = Projection@(é;, — ’I’}Vft(é;));
end for

Claim: The online to batch conversion guarantees

=

20) - 2(F) < E[Regretr]

T



