
CS7545, Fall 2018: Machine Learning Theory - Homework #5

Jacob Abernethy, Bhuvesh Kumar, and Jun-Kun Wang Due: Sunday Dec. 2 at 11:59pm, 2018

Homework Policy: Working in groups is fine, but every student must submit their own writeup. Please
write the members of your group on your solutions. There is no strict limit to the size of the group but we
may find it a bit suspicious if there are more than 4 to a team. Questions labelled with (Challenge) are
not strictly required, but you’ll get some participation credit if you have something interesting to add, even
if it’s only a partial answer.

1) VC dimension. Suppose a hypothesis set H has a finite size |H|. Show that its VC dimension cannot
be larger than log2(|H|).

2) Rademacher Complexity Identities. For a fixed m > 0, prove the following identities for any
α ∈ R and any two hypothesis sets H and H ′ of function mappings from X to R.

(a) Rm(αH) = |α|Rm(H) where αH = {αh(·) | h ∈ H}

(b) Rm(H +H ′) = Rm(H) +Rm(H ′) where H +H ′ = {h(·) + h′(·) | h ∈ H,h′ ∈ H ′}

3) Rademacher Complexity. Let a data set S = (x1, x2, . . . , xm) be a sample of size m and fix
h : X → R. Denote y the vector of predictions of h for S: y = [h(x1), h(x1), . . . , h(xm)]>.

Derive an upper bound on the empirical Rademacher complexity R̂S(H) of a hypothesis set H = {h,−h}
in terms of ‖y‖2 and m.

4) Growth function and Rademacher Complexity. Let H be the family of threshold functions over
the real line: H = {x→ 1x≤γ} ∪ {x→ 1x≥γ′}.

(a) Give an upper bound of the growth function of H: ΠH(m) = max
x1,x2,...,xm

|{(h(x1), . . . , h(xm)) : h ∈
H}|. Use that to bound the Rademacher complexity Rm(H).

(b) Give a high-probability (i.e. true with probability at least 1− δ) upper bound of the true risk that
holds for all h ∈ H. The bound should be in terms of the empirical risk, the upper bound of the
Rademacher complexity Rm(H) you get, probability δ, and sample size m.

5) Massart’s Lemma, Take 2. If you recall when we proved Massart’s Lemma, it looks suspiciously
similar to the proof behind Hoeffding’s Inequality. Indeed, you can reduce it directly, albeit with a slightly
worse bound. Prove the following via a reduction to Hoeffding’s Inequality.
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Let A ⊂ [−1, 1]m be a finite set. Let σ1, . . . , σm be iid Rademacher random variables (i.e. uniform on
{−1, 1}). Prove that

Eσ1:m

[
sup
a∈A

1

m

m∑
i=1

σiai

]
= O

(√
logm+ log |A|

m

)
.

(Hint: First note that, for any real random variable Z and any real t, we can break an expectation into two
pieces E[Z] = E[Z ·1[Z ≤ t]] +E[Z ·1[Z > t]]. You’ll bound the left term by t and the right term via a union
bound. More hints may be available on piazza.)
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