
CS7545, Fall 2018: Machine Learning Theory - Homework #4

Jacob Abernethy, Bhuvesh Kumar, and Jun-Kun Wang Due: Friday, November 16, 2018 at 4:00 pm

Homework Policy: Working in groups is fine, but every student must submit their own writeup. Please
write the members of your group on your solutions. There is no strict limit to the size of the group but we
may find it a bit suspicious if there are more than 4 to a team. Questions labelled with (Challenge) are
not strictly required, but you’ll get some participation credit if you have something interesting to add, even
if it’s only a partial answer.

1) Stochastic Bandit. Let’s consider a stochastic setting: there are two arms 1 and 2, and on each round
t, arm i pays out Xt

i ∈ [0, 1], which is sampled IID from distribution Di. The expected reward is µ1 ∈ [0, 1]
and µ2 ∈ [0, 1] for D1, D2, respectively. Now assume that the time horizon T is known beforehand, and
assume T > 2n. Consider the following algorithm:

Algorithm 1: Two armed bandit – explore then exploit

for t = 1, . . . , 2n do

Pull arm it =

{
1 1 ≤ t ≤ n
2 n+ 1 ≤ t ≤ 2n

Observe Xt
it

end

Set µ̂1 = 1
n

∑n
t=1X

t
1

Set µ̂2 = 1
n

∑2n
t=n+1X

t
2

for t = 2n+ 1, . . . , T do
Pull arm it = arg maxi∈{1,2} µ̂i

end

Define the expected regret as E[RT ] := E[µ∗T −
∑T
t=1 µit ], where µ∗ = max(µ1, µ2) and it is the arm that

the algorithm pulls on round t. Determine n to minimize the regret of this algorithm. What is the best
choice of n? What is the bound of the regret given this number n? Important: Your regret bound can only
depend on the horizon T and the gap |µ1 − µ2|!

2) More Stochastic Bandit. Consider the same 2-armed bandit setting as the previous problem. Now
let us consider Algorithm 2.

Prove a regret bound for this algorithm. Important: Your regret bound can only depend on the horizon T
and the gap |µ1 − µ2|!

(Hint: Define the event good as being true when |µ̂ti−µi| ≤
√

2 log T
Nt

i
holds. E[RT ] = E[RT |good] ·Pr[good]+

E[RT |¬good] · Pr[¬good]. Assume good is true, and let s be the last round for which [LCBs1,UCBs1] ∩
[LCBs2,UCBs2] 6= ∅. What is the cumulative regret of the algorithm up to round s? What is the regret after
round s?
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Algorithm 2: Two armed bandit – interval intersection

for t = 1, . . . , n do
for i = 1, 2 do

N t
i ←

∑t
s=1 I[is = i]

µ̂ti ← 1
Nt

i

∑t
s=1 I[is = i]Xs

i

UCBti ← µ̂ti +
√

2 log T
Nt

i

LCBti ← µ̂ti −
√

2 log T
Nt

i

end

if [LCBt1,UCB
t
1] ∩ [LCBt2,UCB

t
2] 6= ∅ then

Play arm it =

{
1 t odd

2 t even

else
Play arm it = arg maxi∈{1,2} µ̂

t
i

end

end

3) Follow-the-regularized-Leader (FTRL). Imagine we are in the setting of Online Convex Opti-
mization, where we have a convex decision set Ω. Recall the update of Follow the Regularized Leader
(FTRL) is

wt+1 = arg min
w∈Ω

η

t∑
s=1

`s(w) +R(w),

where η > 0 is a parameter, `t(·) is a convex loss function on round t, and R(·) a strongly convex function
on Ω.

Recall the definition of Bregman divergence, Dψ(w, v) := ψ(w)− ψ(v)− 〈∇ψ(v), w − v〉 with respect to the
function ψ(·). We also have an algorithm known as Online Mirror Descent (OMD) which is

wt+1 = arg min
w∈Ω

η`t(w) +Dφt−1(w,wt),

where φ1, φ2, . . . is some sequence of convex functions.

A) Assume that we are in the unconstrained setting, Ω = Rd and the sequence of functions φt is chosen
as φ0(·) = R(·) and φt(·) = φt−1(·) + η`t(·). Show that OMD for this sequence is equivalent to FTRL,
in that they generate the same sequence of updates.

B) Assume that we are in the unconstrained setting, Ω = Rd, the FTRL regularizer is R(w) = 1
2‖w‖

2
2,

and that the sequence of loss functions are linear, `t(w) = 〈θt, w〉. Show that, FTRL is equivalent to
Online Gradient Descent:

wt+1 = wt − η∇wt
`t.

That is, assuming they are initialized the same, show these two algorithms generate the same sequence
of updates.

4) VC dimension: Union of intervals. What is the VC-dimension of subsets of the real line formed
by the union of k intervals?
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5) VC dimension: Ellipsoids. An n-dimensional ellipsoid E is defined by a center point x0 ∈ Rn and a
symmetric positive semidefinite matrix M ∈ Rn×n, such that x ∈ E ⇐⇒ (x− x0)>M(x− x0) ≤ 1.

(a) (Challenge) Give a quadratic upper bound on the VC dimension of concept class of ellipsoids in
Rn. That is, show that the VCD = O(n2).

(b) ((hard) Challenge) Give an exact characterization of the VC dimension of ellipsoids.
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