
CS7545, Fall 2018: Machine Learning Theory - Homework #3

Jacob Abernethy, Bhuvesh Kumar, and Jun-Kun Wang Due: Wednesday, October 17, 2018 at 2 p.m

Homework Policy: Working in groups is fine, but every student must submit their own writeup. Please
write the members of your group on your solutions. There is no strict limit to the size of the group but we
may find it a bit suspicious if there are more than 4 to a team. Questions labelled with (Challenge) are
not strictly required, but you’ll get some participation credit if you have something interesting to add, even
if it’s only a partial answer.

1) Generalized Minimax Theorem. Let X ⊂ Rn and Y ⊂ Rm be convex compact sets. Let
f : X × Y → R be some differentiable function with bounded gradients, where f(·,y) is convex in its first
argument for all fixed y, and f(x, ·) is concave in its second argument for all fixed x.

Prove that
inf
x∈X

sup
y∈Y

f(x,y) = sup
y∈Y

inf
x∈X

f(x,y).

Furthermore, give an efficient algorithm for finding an ε-optimal pair (x∗,y∗) for any parameter ε > 0.

2) Regret of Follow the Perturbed Leader. We will observe a sequence of loss vectors `1, `2, . . . , `T ∈
[0, 1]n. We need an algorithm for picking a sequence of distributions p1,p2, . . . ,pT ∈ ∆n with the goal of
minimizing regret. For the rest of this problem we shall define regret relative to some p as

RegretT (Alg;p) :=

T∑
t=1

(pt · `t − p · `t).

Note that this differs slightly than our usual notion where p is chosen to be the best distribution (or expert)
in hindsight.

I have already mentioned an algorithm often called Follow The Leader (FTL) defined as

FTL := pt ← arg min
p∈∆n

p ·

(
t−1∑
s=1

`s

)

There’s an easy lower bound that shows that this algorithm can achieve Θ(T ) regret which is bad! But what
if we just perturb this algorithm slightly? Here’s an alternative approach which involves playing FTL on the
cumulative loss vector with some added noise.

FTPL := X
u.a.r.∼ [0, b]n; then ∀t pt ← arg min

p∈∆n

p ·

(
X +

t−1∑
s=1

`s

)

Note that the perturbation X is only sampled once in this algorithm. X is sampled uniformly at random
from a cube, and note that the sidelength of the cube b > 0 is a parameter which we can tune.

For analysis purposes, it is convenient to define two fictitious algorithms, known as Be The Leader (BTL),
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and Be The Perturbed Leader (BTPL).

BTL := pt ← arg min
p∈∆n

p ·

(
t∑

s=1

`s

)

BTPL := X
u.a.r.∼ [0, b]n; then ∀t pt ← arg min

p∈∆n

p ·

(
X +

t∑
s=1

`s

)
.

What is different here? Notice I changed the sum to end at s = t rather than s = t − 1 – that’s why these
algorithms are fictitious, they get to see one datapoint in the future! Here we are “being” the leader rather
than “following” the leader because we actually can compute the leader up to and including the loss vector
that will arrive today.

(a) BTL, while not a realistic algorithm, kicks ass! Prove, for any p ∈ ∆n, that

RegretT (BTL;p) ≤ 0

Hint: Induction.

(b) BTPL is really not that much worse than BTL. Prove that

RegretT (BTPL;p) ≤ b.

Note that this is a deterministic statement, doesn’t depend on the sample of X.

(c) Assume that BTPL and FTPL were run using the same perturbation X sampled before round 1.
Let p1,p2, . . . ,pT be the distributions played by FTPL throughout the sequence. Prove that for any
perturbation X,

RegretT (FTPL;p) = RegretT (BTPL;p) +

T∑
t=1

(pt − pt+1) · `t.

Again this is for a fixed, arbitrary X.

(d) It turns out that by perturbing the loss by X, we are much less likely to switch from round to round.
If pt,pt+1 are the distributions played by FTPL on rounds t and t+1 (respectively), then show that
for any t,

E
X

u.a.r.∼ [0,b]n
[(pt − pt+1) · `t] ≤ n

b
.

Hint: Define the random variables Zt := X +
∑t−1

s=1 `
s and Zt+1 := X +

∑t
s=1 `

s. Notice that the
distributions of Zt and Zt+1 overlap significantly.

(e) Let’s put it all together! Prove that for a particular choice of b we can achieve:

E
X

u.a.r.∼ [0,b]n
[Regret(FTPL;p)] ≤

√
nT .

It’s ok if you didn’t solve all of the above, you may use the conclusions from each subproblem.

(f) (Challenge) It is important for the analysis that X is sampled once and fixed throughout the
sequence. But in terms of expected regret, would it matter if we sampled X separately for each
round? Why or why not?
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(g) (Challenge) It’s too bad the above bound isn’t as tight as the O(
√
T log n) bound we can get with

EWA. Can FTPL be improved using a better choice of perturbation X? I might suggest a Laplace
distribution or a Gaussian.

(h) (Challenge) Is there a way to implement EWA (exponential weights algorithm) in the action setting
(i.e. the “hedge” setting) using FTPL? In other words, can you choose a perturbation random
variable X such that the maximizing action on round t is chosen with the same probabilities as the
EWA distribution?

(i) (Challenge) Show that any FTPL can be formulated as FTRL, although the regularizer for FTRL
may not be efficiently computable. Hint : Given FTPL with distribution D, consider the Fenchel
conjugate of the function

g(L) := EX∼D [maxp∈∆n −p · (X + L)] .

3) Online Non-Convex Optimization. Sometimes our nice assumptions don’t always hold. AWWW
SHUCKS!! But maybe things will still work out just fine. For the rest of this problem assume that X ⊂ Rn

is the learner’s decision set, and the learner observes a sequence of functions f1, f2, . . . , fT mapping X → R.
The regret of an algorithm choosing a sequence of x1,x2, . . . is defined in the usual way:

RegretT :=

T∑
t=1

ft(xt)− min
x∈X

T∑
t=1

ft(x)

Wouldn’t it ruin your lovely day if the functions ft were not convex? Maybe the only two conditions you
can guarantee is that the functions ft are bounded (say in [0, 1]) and are 1-Lipschitz : they satisfy that
|ft(x) − ft(x′)| ≤ ‖x − x′‖2. Prove that, assuming X is convex and bounded, there exists a randomized
algorithm with a reasonable expected-regret bound. Something like E[RegretT ] ≤

√
nT log T would be

admirable. (Hint: Always good to ask the experts for ideas. And you needn’t worry about efficiency.)

4) Perceptron extension for GLM. A generalization of the linear regression problem is the Generalized
Linear Modelling (GLM) problem where we are presented with labeled data (xi, yi) where yi is generated
as yi = g(〈w∗,xi〉) where g : R → R is the inverse link function and w∗ is the underlying model. We will
analyze a percepton style algorithm for GLM call GLMtron. Note that g is known to the algorithm.

Input: Inverse link fucntion g, step length η
1 wt ← 0
2 for t = 1, · · · , T do
3 Receive data point xt

4 Predict ŷt = g(〈wt,xi〉)
5 Receive true label yt ∈ R
6 Incur loss `t = (ŷt − yt)2

7 Update wt+1 = wt + η (yt − ŷt)xt

8 end

Algorithm 1: GLMtron
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The total error incurred by GLMtron in T time steps will be denoted by MT , i.e

MT :=

T∑
t=1

`t =

T∑
t=1

(
ŷt − yt

)2
(a) Show that if g(a) = sign(a) and yt ∈ {−1,+1}, then GLMtron reduces to perceptron for a suitable

choice of η.

For the following parts, you may assume ‖xt‖2 ≤ 1 for all t. Also assume g is a non decreasing
function and that g is an invertible function that satisfies K |a− b| ≤ |g(a)− g(b)| ≤ L |a− b| for all
a, b ∈ R.

(b) Show that if the problem is realizable, i.e there exists some w∗ such that yt = g(〈w∗,xt〉) for all
t, then MT is bounded for an appropriate choice of η. What is the bound? Does it depend on
T and η? You may assume ‖w∗‖2 ≤ 1. Hint: It may be useful to prove that for all a, b ∈ R,

(a− b) · (g(a)− g(b)) ≥ 1
L (g(a)− g(b))
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(c) (Challenge) Perform the analysis in a non-realizable setting. It might be useful to compare MT

with the mistake of a fixed benchmark predictor w∗ which has the minimum mistake M∗T . Note that
you cannot assume that ‖w∗‖2 ≤ 1.
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